A degenerate Kirchhoff-type problem involving variable s(·)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s(\cdot )$$\end{document}-order fractional p(·)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p(\cdot )$$\end{document}-Laplacian with weights

被引:0
作者
Mostafa Allaoui [1 ]
Mohamed Karim Hamdani [2 ]
Lamine Mbarki [3 ]
机构
[1] Abdelmalek Essaadi University,Department of Mathematics, FSTH
[2] Mohammed I University,FSO
[3] Military Academy,Science and Technology for Defense Lab LR19DN01
[4] Military Aeronautical Specialities School,Department of Mathematics
[5] University of Sfax,Department of Mathematics, Faculty of Science of Tunis
[6] Faculty of Science of Sfax,undefined
[7] University of Tunis El Manar,undefined
关键词
Variational methods; (.)-fractional Laplacian; Kirchhoff type equations; 35A15; 35D30; 35J35; 35J60;
D O I
10.1007/s10998-023-00562-1
中图分类号
学科分类号
摘要
This paper deals with a class of nonlocal variable s(.)-order fractional p(.)-Kirchhoff type equations: K∫R2N1p(x,y)|φ(x)-φ(y)|p(x,y)|x-y|N+s(x,y)p(x,y)dxdy(-Δ)p(·)s(·)φ(x)=f(x,φ)inΩ,φ=0onRN\Ω.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left\{ \begin{array}{ll} {\mathcal {K}}\left( \int _{{\mathbb {R}}^{2N}}\frac{1}{p(x,y)}\frac{|\varphi (x)-\varphi (y)|^{p(x,y)}}{|x-y|^{N+s(x,y){p(x,y)}}} \,dx\,dy\right) (-\Delta )^{s(\cdot )}_{p(\cdot )}\varphi (x) =f(x,\varphi ) \quad \text{ in } \Omega , \\ \varphi =0 \quad \text{ on } {\mathbb {R}}^N\backslash \Omega . \end{array} \right. \end{aligned}$$\end{document}Under some suitable conditions on the functions p,s,K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p,s, {\mathcal {K}}$$\end{document} and f, the existence and multiplicity of nontrivial solutions for the above problem are obtained. Our results cover the degenerate case in the p(·)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p(\cdot )$$\end{document} fractional setting.
引用
收藏
页码:396 / 411
页数:15
相关论文
共 50 条
[41]   Nonlinear perturbations of a periodic elliptic problem with discontinuous nonlinearity in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}^{N}}$$\end{document} [J].
Claudianor O. Alves ;
Rúbia G. Nascimento .
Zeitschrift für angewandte Mathematik und Physik, 2012, 63 (1) :107-124
[42]   Multiple positive solutions for a class of Kirchhoff type equations in RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{R}^{N}$\end{document} [J].
Lian-bing She ;
Xin Sun ;
Yu Duan .
Boundary Value Problems, 2018 (1)
[45]   Multiple Solutions for a Perturbed Fourth-Order Problem on RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^{N}$$\end{document} [J].
Somayeh Khademloo ;
S. H. Rasouli ;
M. M. Mojarab .
International Journal of Applied and Computational Mathematics, 2017, 3 (3) :2719-2727
[47]   On Symmetric Solutions for (p, q)-Laplacian Equations in RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^N$$\end{document} with Critical Terms [J].
Laura Baldelli ;
Ylenia Brizi ;
Roberta Filippucci .
The Journal of Geometric Analysis, 2022, 32 (4)
[48]   Multiple Solutions for a Class of System of (p, q)-Kirchhoff Equations in ℝN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {R}^{N}$\end{document} [J].
Qiang Chen ;
Caisheng Chen ;
Yunfeng Wei ;
Yanling Shi .
Journal of Dynamical and Control Systems, 2021, 27 (3) :557-572
[49]   On Positive Solutions of Elliptic Equations with Oscillating Nonlinearity in RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^N$$\end{document} [J].
Francisco J. S. A. Corrêa ;
Romildo N. de Lima ;
Alânnio B. Nóbrega .
Mediterranean Journal of Mathematics, 2022, 19 (2)
[50]   Multiple solutions for Schrödinger equations on Riemannian manifolds via ∇\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nabla $$\end{document}-theorems [J].
Luigi Appolloni ;
Giovanni Molica Bisci ;
Simone Secchi .
Annals of Global Analysis and Geometry, 2023, 63 (1)