A degenerate Kirchhoff-type problem involving variable s(·)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s(\cdot )$$\end{document}-order fractional p(·)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p(\cdot )$$\end{document}-Laplacian with weights

被引:0
作者
Mostafa Allaoui [1 ]
Mohamed Karim Hamdani [2 ]
Lamine Mbarki [3 ]
机构
[1] Abdelmalek Essaadi University,Department of Mathematics, FSTH
[2] Mohammed I University,FSO
[3] Military Academy,Science and Technology for Defense Lab LR19DN01
[4] Military Aeronautical Specialities School,Department of Mathematics
[5] University of Sfax,Department of Mathematics, Faculty of Science of Tunis
[6] Faculty of Science of Sfax,undefined
[7] University of Tunis El Manar,undefined
关键词
Variational methods; (.)-fractional Laplacian; Kirchhoff type equations; 35A15; 35D30; 35J35; 35J60;
D O I
10.1007/s10998-023-00562-1
中图分类号
学科分类号
摘要
This paper deals with a class of nonlocal variable s(.)-order fractional p(.)-Kirchhoff type equations: K∫R2N1p(x,y)|φ(x)-φ(y)|p(x,y)|x-y|N+s(x,y)p(x,y)dxdy(-Δ)p(·)s(·)φ(x)=f(x,φ)inΩ,φ=0onRN\Ω.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left\{ \begin{array}{ll} {\mathcal {K}}\left( \int _{{\mathbb {R}}^{2N}}\frac{1}{p(x,y)}\frac{|\varphi (x)-\varphi (y)|^{p(x,y)}}{|x-y|^{N+s(x,y){p(x,y)}}} \,dx\,dy\right) (-\Delta )^{s(\cdot )}_{p(\cdot )}\varphi (x) =f(x,\varphi ) \quad \text{ in } \Omega , \\ \varphi =0 \quad \text{ on } {\mathbb {R}}^N\backslash \Omega . \end{array} \right. \end{aligned}$$\end{document}Under some suitable conditions on the functions p,s,K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p,s, {\mathcal {K}}$$\end{document} and f, the existence and multiplicity of nontrivial solutions for the above problem are obtained. Our results cover the degenerate case in the p(·)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p(\cdot )$$\end{document} fractional setting.
引用
收藏
页码:396 / 411
页数:15
相关论文
共 50 条
[31]   Multiplicity and concentration results for a (p, q)-Laplacian problem in RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^{N}$$\end{document} [J].
Vincenzo Ambrosio ;
Dušan Repovš .
Zeitschrift für angewandte Mathematik und Physik, 2021, 72 (1)
[33]   Existence and Multiplicity Results for an Elliptic Problem Involving Cylindrical Weights and a Homogeneous Term μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} [J].
R. B. Assunção ;
O. H. Miyagaki ;
L. C. Paes-Leme ;
B. M. Rodrigues .
Mediterranean Journal of Mathematics, 2019, 16 (2)
[34]   Normalized Solutions of L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document}-Supercritical Kirchhoff Equations in Bounded DomainsNormalized Solutions of L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document}-Supercritical Kirchhoff EquationsQ. Wang, X. Chang [J].
Qun Wang ;
Xiaojun Chang .
The Journal of Geometric Analysis, 2024, 34 (12)
[35]   Existence of solutions for a perturbation sublinear elliptic equation in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}^N}$$\end{document} [J].
Mohamed Benrhouma ;
Hichem Ounaies .
Nonlinear Differential Equations and Applications NoDEA, 2010, 17 (5) :647-662
[36]   Stein’s Method for Asymmetric α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-stable Distributions, with Application to the Stable CLT [J].
Peng Chen ;
Ivan Nourdin ;
Lihu Xu .
Journal of Theoretical Probability, 2021, 34 (3) :1382-1407
[38]   On a nonlinear partial differential equation with a p.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\left( .\right) $$\end{document}-triharmonic operator [J].
Ismail Aydın ;
Khaled Kefi .
ANNALI DELL'UNIVERSITA' DI FERRARA, 2025, 71 (2)
[40]   Nonlinear perturbations of a periodic elliptic problem with discontinuous nonlinearity in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}^{N}}$$\end{document} [J].
Claudianor O. Alves ;
Rúbia G. Nascimento .
Zeitschrift für angewandte Mathematik und Physik, 2012, 63 (1) :107-124