共 50 条
[21]
Existence of weak solutions for a nonlinear problem involving p(·)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$p(\cdot )$$\end{document}-Laplacian operator with mixed boundary conditions
[J].
The Journal of Analysis,
2022, 30 (3)
:1283-1304
[22]
Infinitely Many Solutions for a Class of Kirchhoff Problems Involving the \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$p(x)$$\end{document}-Laplacian Operator
[J].
Mathematical Notes,
2023, 113 (1-2)
:172-181
[23]
On the Existence of Solutions for Anisotropic p→\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\vec {p}$$\end{document}-Laplacian Problems by the Variational Method
[J].
Mediterranean Journal of Mathematics,
2024, 21 (7)
[24]
On a Fractional Nirenberg Problem Involving the Square Root of the Laplacian on S3\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathbb {S}}^{3}$$\end{document}
[J].
The Journal of Geometric Analysis,
2023, 33 (7)
[25]
On a Kirchhoff Singular p(x)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$p(x)$\end{document}-Biharmonic Problem with Navier Boundary Conditions
[J].
Acta Applicandae Mathematicae,
2020, 170 (1)
:661-676
[26]
Three Solutions for Impulsive Fractional Boundary Value Problems with p\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathbf {p}}$$\end{document}-Laplacian
[J].
Bulletin of the Iranian Mathematical Society,
2022, 48 (4)
:1413-1433
[27]
Radial solutions for a fractional Kirchhoff type equation in RN\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathbb {R}^N$$\end{document}
[J].
Indian Journal of Pure and Applied Mathematics,
2021, 52 (3)
:897-902
[28]
Existence of a mountain pass solution for a nonlocal fractional (p,q)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$(p, q)$\end{document}-Laplacian problem
[J].
Boundary Value Problems,
2020 (1)
[29]
On solutions for fractional N/s\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\pmb {N/s}$$\end{document}-Laplacian equations involving exponential growth
[J].
Nonlinear Differential Equations and Applications NoDEA,
2021, 28 (6)
[30]
Weak Solutions for a System Involving Anisotropic p→(·),q→(·)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\left( \overrightarrow{p}(\cdot ), \overrightarrow{q}(\cdot )\right) $$\end{document}-Laplacian Operators
[J].
Iranian Journal of Science,
2024, 48 (5)
:1253-1263