A degenerate Kirchhoff-type problem involving variable s(·)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s(\cdot )$$\end{document}-order fractional p(·)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p(\cdot )$$\end{document}-Laplacian with weights

被引:0
作者
Mostafa Allaoui [1 ]
Mohamed Karim Hamdani [2 ]
Lamine Mbarki [3 ]
机构
[1] Abdelmalek Essaadi University,Department of Mathematics, FSTH
[2] Mohammed I University,FSO
[3] Military Academy,Science and Technology for Defense Lab LR19DN01
[4] Military Aeronautical Specialities School,Department of Mathematics
[5] University of Sfax,Department of Mathematics, Faculty of Science of Tunis
[6] Faculty of Science of Sfax,undefined
[7] University of Tunis El Manar,undefined
关键词
Variational methods; (.)-fractional Laplacian; Kirchhoff type equations; 35A15; 35D30; 35J35; 35J60;
D O I
10.1007/s10998-023-00562-1
中图分类号
学科分类号
摘要
This paper deals with a class of nonlocal variable s(.)-order fractional p(.)-Kirchhoff type equations: K∫R2N1p(x,y)|φ(x)-φ(y)|p(x,y)|x-y|N+s(x,y)p(x,y)dxdy(-Δ)p(·)s(·)φ(x)=f(x,φ)inΩ,φ=0onRN\Ω.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left\{ \begin{array}{ll} {\mathcal {K}}\left( \int _{{\mathbb {R}}^{2N}}\frac{1}{p(x,y)}\frac{|\varphi (x)-\varphi (y)|^{p(x,y)}}{|x-y|^{N+s(x,y){p(x,y)}}} \,dx\,dy\right) (-\Delta )^{s(\cdot )}_{p(\cdot )}\varphi (x) =f(x,\varphi ) \quad \text{ in } \Omega , \\ \varphi =0 \quad \text{ on } {\mathbb {R}}^N\backslash \Omega . \end{array} \right. \end{aligned}$$\end{document}Under some suitable conditions on the functions p,s,K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p,s, {\mathcal {K}}$$\end{document} and f, the existence and multiplicity of nontrivial solutions for the above problem are obtained. Our results cover the degenerate case in the p(·)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p(\cdot )$$\end{document} fractional setting.
引用
收藏
页码:396 / 411
页数:15
相关论文
共 50 条
[22]   Infinitely Many Solutions for a Class of Kirchhoff Problems Involving the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p(x)$$\end{document}-Laplacian Operator [J].
A. Ghanmi ;
L. Mbarki ;
K. Saoudi .
Mathematical Notes, 2023, 113 (1-2) :172-181
[23]   On the Existence of Solutions for Anisotropic p→\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\vec {p}$$\end{document}-Laplacian Problems by the Variational Method [J].
Armin Hadjian ;
Stepan Tersian .
Mediterranean Journal of Mathematics, 2024, 21 (7)
[24]   On a Fractional Nirenberg Problem Involving the Square Root of the Laplacian on S3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {S}}^{3}$$\end{document} [J].
Yan Li ;
Zhongwei Tang ;
Ning Zhou .
The Journal of Geometric Analysis, 2023, 33 (7)
[25]   On a Kirchhoff Singular p(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p(x)$\end{document}-Biharmonic Problem with Navier Boundary Conditions [J].
Khaled Kefi ;
Kamel Saoudi ;
Mohammed Mosa Al-Shomrani .
Acta Applicandae Mathematicae, 2020, 170 (1) :661-676
[26]   Three Solutions for Impulsive Fractional Boundary Value Problems with p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf {p}}$$\end{document}-Laplacian [J].
John R. Graef ;
Shapour Heidarkhani ;
Lingju Kong ;
Shahin Moradi .
Bulletin of the Iranian Mathematical Society, 2022, 48 (4) :1413-1433
[28]   Existence of a mountain pass solution for a nonlocal fractional (p,q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(p, q)$\end{document}-Laplacian problem [J].
F. Behboudi ;
A. Razani ;
M. Oveisiha .
Boundary Value Problems, 2020 (1)
[29]   On solutions for fractional N/s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pmb {N/s}$$\end{document}-Laplacian equations involving exponential growth [J].
Manassés de Souza ;
Uberlandio B. Severo ;
Thiago Luiz O. do Rêgo .
Nonlinear Differential Equations and Applications NoDEA, 2021, 28 (6)
[30]   Weak Solutions for a System Involving Anisotropic p→(·),q→(·)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( \overrightarrow{p}(\cdot ), \overrightarrow{q}(\cdot )\right) $$\end{document}-Laplacian Operators [J].
A. Razani ;
F. Safari ;
T. Soltani .
Iranian Journal of Science, 2024, 48 (5) :1253-1263