共 50 条
- [21] Infinitely Many Solutions for a Class of Kirchhoff Problems Involving the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p(x)$$\end{document}-Laplacian Operator Mathematical Notes, 2023, 113 (1-2) : 172 - 181
- [22] On the Existence of Solutions for Anisotropic p→\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\vec {p}$$\end{document}-Laplacian Problems by the Variational Method Mediterranean Journal of Mathematics, 2024, 21 (7)
- [23] On a Fractional Nirenberg Problem Involving the Square Root of the Laplacian on S3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {S}}^{3}$$\end{document} The Journal of Geometric Analysis, 2023, 33 (7)
- [24] On a Kirchhoff Singular p(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p(x)$\end{document}-Biharmonic Problem with Navier Boundary Conditions Acta Applicandae Mathematicae, 2020, 170 (1) : 661 - 676
- [25] Three Solutions for Impulsive Fractional Boundary Value Problems with p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf {p}}$$\end{document}-Laplacian Bulletin of the Iranian Mathematical Society, 2022, 48 (4) : 1413 - 1433
- [26] Radial solutions for a fractional Kirchhoff type equation in RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^N$$\end{document} Indian Journal of Pure and Applied Mathematics, 2021, 52 (3) : 897 - 902
- [27] Existence of a mountain pass solution for a nonlocal fractional (p,q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(p, q)$\end{document}-Laplacian problem Boundary Value Problems, 2020 (1)
- [28] On solutions for fractional N/s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pmb {N/s}$$\end{document}-Laplacian equations involving exponential growth Nonlinear Differential Equations and Applications NoDEA, 2021, 28 (6)
- [29] Weak Solutions for a System Involving Anisotropic p→(·),q→(·)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( \overrightarrow{p}(\cdot ), \overrightarrow{q}(\cdot )\right) $$\end{document}-Laplacian Operators Iranian Journal of Science, 2024, 48 (5) : 1253 - 1263
- [30] A fractional Ambrosetti-Prodi type problem in RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb R^N$$\end{document} Journal of Elliptic and Parabolic Equations, 2023, 9 (1) : 355 - 387