Molecular mechanism underlying SNARE- mediated membrane fusion enlightened by all- atom molecular dynamics simulations

被引:13
作者
Rizo, Josep [1 ,2 ,3 ]
Sari, Levent [1 ,4 ]
Jaczynska, Klaudia [1 ,2 ,3 ]
Rosenmund, Christian [5 ,6 ]
Lin, Milo M. [1 ,4 ]
机构
[1] Univ Texas Southwestern Med Ctr, Dept Biophys, Dallas, TX 75390 USA
[2] Univ Texas Southwestern Med Ctr, Dept Biochem, Dallas, TX 75390 USA
[3] Univ Texas Southwestern Med Ctr, Dept Pharmacol, Dallas, TX 75390 USA
[4] Univ Texas Southwestern Med Ctr, Green Ctr Syst Biol, Dallas, TX 75390 USA
[5] Charite Univ Med Berlin, Inst Neurophysiol, D-10117 Berlin, Germany
[6] NeuroCure Cluster Excellence, D-10117 Berlin, Germany
关键词
SNAREs; membrane fusion; molecular dynamics simulations; neurotransmitter; juxtamembrane; NEUROTRANSMITTER RELEASE; 3-DIMENSIONAL STRUCTURE; JUXTAMEMBRANE REGION; VESICLE FUSION; COMPLEX; EXOCYTOSIS; PORE; MACHINERY; TEMPLATE; PROVIDES;
D O I
10.1073/pnas.2321447121
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The SNAP receptor (SNARE) proteins syntaxin-1, SNAP - 25, and synaptobrevin mediate neurotransmitter release by forming tight SNARE complexes that fuse synaptic vesicles with the plasma membranes in microseconds. Membrane fusion is generally explained by the action of proteins on macroscopic membrane properties such as curvature, elastic modulus, and tension, and a widespread model envisions that the SNARE motifs, juxtamembrane linkers, and C- terminal transmembrane regions of synaptobrevin and syntaxin-1 form continuous helices that act mechanically as semirigid rods, squeezing the membranes together as they assemble ("zipper") from the N to the C termini. However, the mechanism underlying fast SNARE- induced membrane fusion remains unknown. We have used all - atom molecular dynamics simulations to investigate this mechanism. Our results need to be interpreted with caution because of the limited number and length of the simulations, but they suggest a model of membrane fusion that has a natural physicochemical basis, emphasizes local molecular events over general membrane properties, and explains extensive experimental data. In this model, the central event that initiates fast (microsecond scale) membrane fusion occurs when the SNARE helices zipper into the juxtamembrane linkers which, together with the adjacent transmembrane regions, promote encounters of acyl chains from both bilayers at the polar interface. The resulting hydrophobic nucleus rapidly expands into stalk - like structures that gradually progress to form a fusion pore, aided by the SNARE transmembrane regions and without clearly discernible intermediates. The propensity of polyunsaturated lipids to participate encounters that initiate fusion suggests that these lipids may be important for the high speed of neurotransmitter release.
引用
收藏
页数:12
相关论文
共 75 条
[1]   MEMBRANE FUSION A direct role for the Sec1/Munc18-family protein Vps33 as a template for SNARE assembly [J].
Baker, Richard W. ;
Jeffrey, Philip D. ;
Zick, Michael ;
Phillips, Ben P. ;
Wickner, William T. ;
Hughson, Frederick M. .
SCIENCE, 2015, 349 (6252) :1111-1114
[2]   Exocytotic fusion pores are composed of both lipids and proteins [J].
Bao, Huan ;
Goldschen-Ohm, Marcel ;
Jeggle, Pia ;
Chanda, Baron ;
Edwardson, J. Michael ;
Chapman, Edwin R. .
NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2016, 23 (01) :67-73
[3]   Direct Simulation of Protein-Mediated Vesicle Fusion: Lung Surfactant Protein B [J].
Baoukina, Svetlana ;
Tieleman, D. Peter .
BIOPHYSICAL JOURNAL, 2010, 99 (07) :2134-2142
[4]   Optimization of the Additive CHARMM All-Atom Protein Force Field Targeting Improved Sampling of the Backbone φ, ψ and Side-Chain χ1 and χ2 Dihedral Angles [J].
Best, Robert B. ;
Zhu, Xiao ;
Shim, Jihyun ;
Lopes, Pedro E. M. ;
Mittal, Jeetain ;
Feig, Michael ;
MacKerell, Alexander D., Jr. .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2012, 8 (09) :3257-3273
[5]   Reluctance to membrane binding enables accessibility of the synaptobrevin SNARE motif for SNARE complex formation [J].
Brewer, Kyle D. ;
Li, Wei ;
Horne, Bethany Erin ;
Rizo, Josep .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (31) :12723-12728
[6]   The Core Complex of the Ca2+-Triggered Presynaptic Fusion Machinery [J].
Brunger, Axel T. ;
Leitz, Jeremy .
JOURNAL OF MOLECULAR BIOLOGY, 2023, 435 (01)
[7]   Comparative Lipidomic Analysis of Mouse and Human Brain with Alzheimer Disease [J].
Chan, Robin B. ;
Oliveira, Tiago G. ;
Cortes, Etty P. ;
Honig, Lawrence S. ;
Duff, Karen E. ;
Small, Scott A. ;
Wenk, Markus R. ;
Shui, Guanghou ;
Di Paolo, Gilbert .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2012, 287 (04) :2678-2688
[8]   Lipid-anchored Synaptobrevin Provides Little or No Support for Exocytosis or Liposome Fusion [J].
Chang, Che-Wei ;
Chiang, Chung-Wei ;
Gaffaney, Jon D. ;
Chapman, Edwin R. ;
Jackson, Meyer B. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2016, 291 (06) :2848-2857
[9]   Three-dimensional structure of the complexin/SNARE complex [J].
Chen, XC ;
Tomchick, DR ;
Kovrigin, E ;
Araç, D ;
Machius, M ;
Südhof, TC ;
Rizo, J .
NEURON, 2002, 33 (03) :397-409
[10]   Mechanics of membrane fusion [J].
Chernomordik, Leonid V. ;
Kozlov, Michael M. .
NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2008, 15 (07) :675-683