Semantic segmentation of urban environments: Leveraging U-Net deep learning model for cityscape image analysis

被引:8
作者
Arulananth, T. S. [1 ]
Kuppusamy, P. G. [2 ]
Ayyasamy, Ramesh Kumar [3 ]
Alhashmi, Saadat M. [4 ]
Mahalakshmi, M. [5 ]
Vasanth, K. [6 ]
Chinnasamy, P. [7 ]
机构
[1] MLR Inst Technol, Dept Elect & Commun Engn, Hyderabad, India
[2] Siddharth Inst Engn & Technol, Dept Elect & Commun Engn, Puttur, Andhrapradesh, India
[3] Univ Tunku Abdul Rahman, Fac Informat & Commun Technol, Kampar, Perak, Malaysia
[4] Univ Sharjah, Coll Comp & Informat, Sharjah, U Arab Emirates
[5] SRM Inst Sci & Technol, Dept Networking & Commun, Coll Engn & Technol, Kattankulathur, Tamil Nadu, India
[6] Chaitanya Bharathi Inst Technol, Dept Elect & Commun Engn, Hyderabad, Telangana, India
[7] MLR Inst Technol, Dept Comp Sci & Engn, Hyderabad, Telangana, India
来源
PLOS ONE | 2024年 / 19卷 / 04期
关键词
CONTEXT AGGREGATION;
D O I
10.1371/journal.pone.0300767
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Semantic segmentation of cityscapes via deep learning is an essential and game-changing research topic that offers a more nuanced comprehension of urban landscapes. Deep learning techniques tackle urban complexity and diversity, which unlocks a broad range of applications. These include urban planning, transportation management, autonomous driving, and smart city efforts. Through rich context and insights, semantic segmentation helps decision-makers and stakeholders make educated decisions for sustainable and effective urban development. This study investigates an in-depth exploration of cityscape image segmentation using the U-Net deep learning model. The proposed U-Net architecture comprises an encoder and decoder structure. The encoder uses convolutional layers and down sampling to extract hierarchical information from input images. Each down sample step reduces spatial dimensions, and increases feature depth, aiding context acquisition. Batch normalization and dropout layers stabilize models and prevent overfitting during encoding. The decoder reconstructs higher-resolution feature maps using "UpSampling2D" layers. Through extensive experimentation and evaluation of the Cityscapes dataset, this study demonstrates the effectiveness of the U-Net model in achieving state-of-the-art results in image segmentation. The results clearly shown that, the proposed model has high accuracy, mean IOU and mean DICE compared to existing models.
引用
收藏
页数:20
相关论文
共 39 条
[1]  
Ali M., 2020, P EUR C COMP VIS, P290
[2]   PCA Based Dimensional Data Reduction and Segmentation for DICOM Images [J].
Arulananth, T. S. ;
Balaji, L. ;
Baskar, M. ;
Anbarasu, V. ;
Rao, Koppula Srinivas .
NEURAL PROCESSING LETTERS, 2023, 55 (01) :3-17
[3]   Edge detection using fast pixel based matching and contours mapping algorithms [J].
Arulananth, T. S. ;
Chinnasamy, P. ;
Babu, J. Chinna ;
Kiran, Ajmeera ;
Hemalatha, J. ;
Abbas, Mohamed .
PLOS ONE, 2023, 18 (08)
[4]   Leveraging Deep Learning and IoT big data analytics to support the smart cities development: Review and future directions [J].
Ben Atitallah, Safa ;
Driss, Maha ;
Boulila, Wadii ;
Ben Ghezala, Henda .
COMPUTER SCIENCE REVIEW, 2020, 38
[5]   Interpreting image databases by region classification [J].
Campbell, NW ;
MacKeown, WPJ ;
Thomas, BT ;
Troscianko, T .
PATTERN RECOGNITION, 1997, 30 (04) :555-563
[6]   Edge Intelligence Empowered Vehicle Detection and Image Segmentation for Autonomous Vehicles [J].
Chen, Chen ;
Wang, Chenyu ;
Liu, Bin ;
He, Ci ;
Cong, Li ;
Wan, Shaohua .
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (11) :13023-13034
[7]   A Multi-channel Deep Learning Architecture for Understanding the Urban Scene Semantics [J].
Demirtas, Tuba ;
Parlak, Ismail Burak .
INTELLIGENT AND FUZZY SYSTEMS: DIGITAL ACCELERATION AND THE NEW NORMAL, INFUS 2022, VOL 2, 2022, 505 :101-108
[8]   Urban Tree Classification Based on Object-Oriented Approach and Random Forest Algorithm Using Unmanned Aerial Vehicle (UAV) Multispectral Imagery [J].
Guo, Qian ;
Zhang, Jian ;
Guo, Shijie ;
Ye, Zhangxi ;
Deng, Hui ;
Hou, Xiaolong ;
Zhang, Houxi .
REMOTE SENSING, 2022, 14 (16)
[9]   A review of semantic segmentation using deep neural networks [J].
Guo, Yanming ;
Liu, Yu ;
Georgiou, Theodoros ;
Lew, Michael S. .
INTERNATIONAL JOURNAL OF MULTIMEDIA INFORMATION RETRIEVAL, 2018, 7 (02) :87-93
[10]   Using Channel-Wise Attention for Deep CNN Based Real-Time Semantic Segmentation With Class-Aware Edge Information [J].
Han, Hsiang-Yu ;
Chen, Yu-Chi ;
Hsiao, Pei-Yung ;
Fu, Li-Chen .
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2021, 22 (02) :1041-1051