Deep learning-based correction for time truncation in cerebral computed tomography perfusion

被引:1
作者
Ichikawa, Shota [1 ,2 ]
Ozaki, Makoto [3 ]
Itadani, Hideki [3 ]
Sugimori, Hiroyuki [4 ]
Kondo, Yohan [1 ]
机构
[1] Niigata Univ, Fac Med, Sch Hlth Sci, Dept Radiol Technol, 2-746 Asahimachi-Dori, Chuo-ku, Niigata 9518518, Japan
[2] Niigata Univ, Inst Res Adm, 8050 Ikarashi 2--cho,Nishi-ku, Niigata 9502181, Japan
[3] Kurashiki Cent Hosp, Dept Radiol Technol, 1-1-1 Miwa, Kurashiki, Okayama 7108602, Japan
[4] Hokkaido Univ, Fac Hlth Sci, Kita-12,Nishi-5,Kita-ku, Sapporo 0600812, Japan
关键词
CT perfusion; Time truncation; Time-series prediction; Deep learning; 3D U-Net; CT PERFUSION; STROKE; SOFTWARE; VOLUME; IMAGE;
D O I
10.1007/s12194-024-00818-6
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Cerebral computed tomography perfusion (CTP) imaging requires complete acquisition of contrast bolus inflow and washout in the brain parenchyma; however, time truncation undoubtedly occurs in clinical practice. To overcome this issue, we proposed a three-dimensional (two-dimensional + time) convolutional neural network (CNN)-based approach to predict missing CTP image frames at the end of the series from earlier acquired image frames. Moreover, we evaluated three strategies for predicting multiple time points. Seventy-two CTP scans with 89 frames and eight slices from a publicly available dataset were used to train and test the CNN models capable of predicting the last 10 image frames. The prediction strategies were single-shot prediction, recursive multi-step prediction, and direct-recursive hybrid prediction.Single-shot prediction predicted all frames simultaneously, while recursive multi-step prediction used prior predictions as input for subsequent steps, and direct-recursive hybrid prediction employed separate models for each step with prior predictions as input for the next step. The accuracies of the predicted image frames were evaluated in terms of image quality, bolus shape, and clinical perfusion parameters. We found that the image quality metrics were superior when multiple CTP images were predicted simultaneously rather than recursively. The bolus shape also showed the highest correlation (r = 0.990, p < 0.001) and the lowest variance (95% confidence interval, -453.26-445.53) in the single-shot prediction. For all perfusion parameters, the single-shot prediction had the smallest absolute differences from ground truth. Our proposed approach can potentially minimize time truncation errors and support the accurate quantification of ischemic stroke.
引用
收藏
页码:666 / 678
页数:13
相关论文
共 50 条
[31]   Investigation of a novel deep learning-based computed tomography perfusion mapping framework for functional lung avoidance radiotherapy (vol 11, 644703, 2021) [J].
Ren, Ge ;
Lam, Sai-kit ;
Zhang, Jiang ;
Xiao, Haonan ;
Cheung, Andy Lai-yin ;
Ho, Wai-yin ;
Qin, Jing ;
Cai, Jing .
FRONTIERS IN ONCOLOGY, 2022, 12
[32]   A deep learning-based ground motion truncation method to improve efficiency of structural time history analysis [J].
He, Yiting ;
Zhao, Jianjun ;
Yao, Lan ;
Li, Shuang .
STRUCTURES, 2024, 63
[33]   Deep Learning-Based Brain Computed Tomography Image Classification with Hyperparameter Optimization through Transfer Learning for Stroke [J].
Chen, Yung-Ting ;
Chen, Yao-Liang ;
Chen, Yi-Yun ;
Huang, Yu-Ting ;
Wong, Ho-Fai ;
Yan, Jiun-Lin ;
Wang, Jiun-Jie .
DIAGNOSTICS, 2022, 12 (04)
[34]   Deep learning for automated cerebral aneurysm detection on computed tomography images [J].
Xilei Dai ;
Lixiang Huang ;
Yi Qian ;
Shuang Xia ;
Winston Chong ;
Junjie Liu ;
Antonio Di Ieva ;
Xiaoxi Hou ;
Chubin Ou .
International Journal of Computer Assisted Radiology and Surgery, 2020, 15 :715-723
[35]   Deep learning for automated cerebral aneurysm detection on computed tomography images [J].
Dai, Xilei ;
Huang, Lixiang ;
Qian, Yi ;
Xia, Shuang ;
Chong, Winston ;
Liu, Junjie ;
Di Ieva, Antonio ;
Hou, Xiaoxi ;
Ou, Chubin .
INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2020, 15 (04) :715-723
[36]   Low Performing Pixel Correction in Computed Tomography using Deep Learning [J].
Patil, Bhushan D. ;
Agrawal, Utkarsh ;
Singhal, Vanika ;
Langoju, Rajesh ;
Hsieh, Jiang ;
Lakshminarasimhan, Shobana ;
Das, Bipul .
DEVELOPMENTS IN X-RAY TOMOGRAPHY XIV, 2022, 12242
[37]   Deep learning-based automatic segmentation of cerebral infarcts on diffusion MRI [J].
Ryu, Wi-Sun ;
Schellingerhout, Dawid ;
Park, Jonghyeok ;
Chung, Jinyong ;
Jeong, Sang-Wuk ;
Gwak, Dong-Seok ;
Kim, Beom Joon ;
Kim, Joon-Tae ;
Hong, Keun-Sik ;
Lee, Kyung Bok ;
Park, Tai Hwan ;
Park, Sang-Soon ;
Park, Jong-Moo ;
Kang, Kyusik ;
Cho, Yong-Jin ;
Park, Hong-Kyun ;
Lee, Byung-Chul ;
Yu, Kyung-Ho ;
Oh, Mi Sun ;
Lee, Soo Joo ;
Kim, Jae Guk ;
Cha, Jae-Kwan ;
Kim, Dae-Hyun ;
Lee, Jun ;
Park, Man Seok ;
Kim, Dongmin ;
Bang, Oh Young ;
Kim, Eung Yeop ;
Sohn, Chul-Ho ;
Kim, Hosung ;
Bae, Hee-Joon ;
Kim, Dong-Eog .
SCIENTIFIC REPORTS, 2025, 15 (01)
[38]   Diagnostic performance of deep learning algorithm for analysis of computed tomography myocardial perfusion [J].
Giuseppe Muscogiuri ;
Mattia Chiesa ;
Andrea Baggiano ;
Pierino Spadafora ;
Rossella De Santis ;
Marco Guglielmo ;
Stefano Scafuri ;
Laura Fusini ;
Saima Mushtaq ;
Edoardo Conte ;
Andrea Annoni ;
Alberto Formenti ;
Maria Elisabetta Mancini ;
Francesca Ricci ;
Francesco Paolo Ariano ;
Luigi Spiritigliozzi ;
Mario Babbaro ;
Rocco Mollace ;
Riccardo Maragna ;
Carlo Maria Giacari ;
Daniele Andreini ;
Andrea Igoren Guaricci ;
Gualtiero I. Colombo ;
Mark G. Rabbat ;
Mauro Pepi ;
Francesco Sardanelli ;
Gianluca Pontone .
European Journal of Nuclear Medicine and Molecular Imaging, 2022, 49 :3119-3128
[39]   Cardiac motion correction with a deep learning network for perfusion defect assessment in single-photon emission computed tomography myocardial perfusion imaging [J].
Zhang, Xirang ;
Yang, Yongyi ;
Pretorius, P. Hendrik ;
Slomka, Piotr J. ;
King, Michael A. .
JOURNAL OF NUCLEAR CARDIOLOGY, 2025, 43
[40]   Diagnostic performance of deep learning algorithm for analysis of computed tomography myocardial perfusion [J].
Muscogiuri, Giuseppe ;
Chiesa, Mattia ;
Baggiano, Andrea ;
Spadafora, Pierino ;
De Santis, Rossella ;
Guglielmo, Marco ;
Scafuri, Stefano ;
Fusini, Laura ;
Mushtaq, Saima ;
Conte, Edoardo ;
Annoni, Andrea ;
Formenti, Alberto ;
Mancini, Maria Elisabetta ;
Ricci, Francesca ;
Ariano, Francesco Paolo ;
Spiritigliozzi, Luigi ;
Babbaro, Mario ;
Mollace, Rocco ;
Maragna, Riccardo ;
Giacari, Carlo Maria ;
Andreini, Daniele ;
Guaricci, Andrea Igoren ;
Colombo, Gualtiero I. ;
Rabbat, Mark G. ;
Pepi, Mauro ;
Sardanelli, Francesco ;
Pontone, Gianluca .
EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2022, 49 (09) :3119-3128