Design of an on-chip germanium cavity for room-temperature infrared lasing

被引:0
作者
Boztug, Cicek [1 ]
机构
[1] TED Univ, Dept Elect & Elect Engn, TR-06420 Ankara, Turkiye
关键词
Strained germanium; Bandgap engineering; Group-IV light source; Silicon photonics; LIGHT-EMITTING GERMANIUM; WAVE-GUIDES; SILICON; STRAIN; PHOTOLUMINESCENCE; EMISSION;
D O I
10.1007/s11082-024-07304-8
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Germanium (Ge) is one of the most promising material platforms to enable the realization of monolithically integrated laser on silicon because it is a group-IV material with a pseudo-direct-band structure that can be converted into direct-bandgap either through the application of tensile strain or via the tin (Sn) incorporation in Ge. The bandgap modification enhances the light emission efficiency of Ge, where lasing can also be observed if a suitable cavity preserving the strain can be realized. In fact, several different research groups have reported lasing from strained Ge and GeSn optical cavities, however they all report lasing at low temperatures and room-temperature lasing, which is the ultimate goal required for a fully integrated laser, has not been demonstrated yet. In this work, we design an on-chip germanium cavity that has all the ingredients combined to make the room-temperature lasing possible. The design includes a 4.6% uniaxially tensile strained Ge gain medium embedded in a Fabry-Perot like cavity composed of two distributed Bragg reflectors. 3-dimensional (3D) Finite Element Method (FEM) based strain simulations together with a proposed fabrication methodology provides a guideline for the realization of the structure. Furthermore, 3D Finite Difference Time Domain (FDTD) simulations demonstrate that the designed structure is suitable for the room-temperature lasing in a wavelength range of 2410-2570 nm. 3D FEM-based heat transfer simulations performed for the designed cavity verifies the eligibility of the room-temperature operation paving the way for a possible demonstration of on-chip laser that could take part in the fully integrated infrared systems for a variety of applications including biological and chemical sensing, as well as security such as alarm systems and free-space optical communications.
引用
收藏
页数:17
相关论文
共 43 条
  • [1] An optically pumped 2.5 μm GeSn laser on Si operating at 110 K
    Al-Kabi, Sattar
    Ghetmiri, Seyed Amir
    Margetis, Joe
    Pham, Thach
    Zhou, Yiyin
    Dou, Wei
    Collier, Bria
    Quinde, Randy
    Du, Wei
    Mosleh, Aboozar
    Liu, Jifeng
    Sun, Greg
    Soref, Richard A.
    Tolle, John
    Li, Baohua
    Mortazavi, Mansour
    Naseem, Hameed A.
    Yu, Shui-Qing
    [J]. APPLIED PHYSICS LETTERS, 2016, 109 (17)
  • [2] Low-threshold optically pumped lasing in highly strained germanium nanowires
    Bao, Shuyu
    Kim, Daeik
    Onwukaeme, Chibuzo
    Gupta, Shashank
    Saraswat, Krishna
    Lee, Kwang Hong
    Kim, Yeji
    Min, Dabin
    Jung, Yongduck
    Qiu, Haodong
    Wang, Hong
    Fitzgerald, Eugene A.
    Tan, Chuan Seng
    Nam, Donguk
    [J]. NATURE COMMUNICATIONS, 2017, 8
  • [3] Strained-Germanium Nanostructures for Infrared Photonics
    Boztug, Cicek
    Sanchez-Perez, Jose R.
    Cavallo, Francesca
    Lagally, Max G.
    Paiella, Roberto
    [J]. ACS NANO, 2014, 8 (04) : 3136 - 3151
  • [4] Low-loss germanium strip waveguides on silicon for the mid-infrared
    Chang, Yu-Chi
    Paeder, Vincent
    Hvozdara, Lubos
    Hartmann, Jean-Michel
    Herzig, Hans Peter
    [J]. OPTICS LETTERS, 2012, 37 (14) : 2883 - 2885
  • [5] Crack-Free Silicon-Nitride-on-Insulator Nonlinear Circuits for Continuum Generation in the C-Band
    El Dirani, Houssein
    Casale, Marco
    Kerdiles, Sebastien
    Socquet-Clerc, Carole
    Letartre, Xavier
    Monat, Christelle
    Sciancalepore, Corrado
    [J]. IEEE PHOTONICS TECHNOLOGY LETTERS, 2018, 30 (04) : 355 - 358
  • [6] Tensile-strained germanium microdisks with circular Bragg reflectors
    El Kurdi, M.
    Prost, M.
    Ghrib, A.
    Elbaz, A.
    Sauvage, S.
    Checoury, X.
    Beaudoin, G.
    Sagnes, I.
    Picardi, G.
    Ossikovski, R.
    Boeuf, F.
    Boucaud, P.
    [J]. APPLIED PHYSICS LETTERS, 2016, 108 (09)
  • [7] Germanium microlasers on metallic pedestals
    Elbaz, A.
    El Kurdi, M.
    Aassime, A.
    Sauvage, S.
    Checoury, X.
    Sagnes, I.
    Baudot, C.
    Boeuf, F.
    Boucaud, P.
    [J]. APL PHOTONICS, 2018, 3 (10)
  • [8] 1.9% bi-axial tensile strain in thick germanium suspended membranes fabricated in optical germanium-on-insulator substrates for laser applications
    Gassenq, A.
    Guilloy, K.
    Dias, G. Osvaldo
    Pauc, N.
    Rouchon, D.
    Hartmann, J. -M.
    Widiez, J.
    Tardif, S.
    Rieutord, F.
    Escalante, J.
    Duchemin, I.
    Niquet, Y. -M.
    Geiger, R.
    Zabel, T.
    Sigg, H.
    Faist, J.
    Chelnokov, A.
    Reboud, V.
    Calvo, V.
    [J]. APPLIED PHYSICS LETTERS, 2015, 107 (19)
  • [9] Tensile-strained germanium microdisks
    Ghrib, A.
    El Kurdi, M.
    de Kersauson, M.
    Prost, M.
    Sauvage, S.
    Checoury, X.
    Beaudoin, G.
    Sagnes, I.
    Boucaud, P.
    [J]. APPLIED PHYSICS LETTERS, 2013, 102 (22)
  • [10] All-Around SiN Stressor for High and Homogeneous Tensile Strain in Germanium Microdisk Cavities
    Ghrib, Abdelhamid
    El Kurdi, Moustafa
    Prost, Mathias
    Sauvage, Sebastien
    Checoury, Xavier
    Beaudoin, Gregoire
    Chaigneau, Marc
    Ossikovski, Razvigor
    Sagnes, Isabelle
    Boucaud, Philippe
    [J]. ADVANCED OPTICAL MATERIALS, 2015, 3 (03): : 353 - 358