Implicit Function Theorem for Nonlinear Time-Delay Systems With Algebraic Constraints

被引:0
作者
Chen, Yahao [1 ]
Ghanes, Malek [1 ]
Barbot, Jean-Pierre [1 ,2 ]
机构
[1] Nantes Univ, CNRS, Cent Nantes, UMR 6004,LS2N, F-44300 Nantes, France
[2] ENSEA, Quartz EA 7393, F-95000 Cergy, France
关键词
Bicausal changes of coordinates; causality; differential-algebraic equations (DAEs); implicit function theorem; nonlinear systems; time-delay; NUMERICAL-SOLUTION; EQUATIONS; OBSERVABILITY; STABILITY;
D O I
10.1109/TAC.2023.3332205
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this note, we discuss a generalization of the well-known implicit function theorem to the time-delay case. We show that the latter problem is closely related to the bicausal changes of coordinates of time-delay systems [Califano and Moog (2014), Califano and Moog (2017)]. An iterative algorithm is proposed to check the conditions and to construct the desired bicausal change of coordinates for the proposed implicit function theorem. Moreover, we show that our results can be applied to delayed differential-algebraic equations to reduce their indices and to get their solutions. Some numerical examples are given to illustrate our results.
引用
收藏
页码:2629 / 2636
页数:8
相关论文
共 30 条
[21]  
Márquez LA, 2002, KYBERNETIKA, V38, P445
[22]   New insights on the analysis of nonlinear time-delay systems: Application to the triangular equivalence [J].
Marquez-Martinez, L. A. ;
Moog, C. H. .
SYSTEMS & CONTROL LETTERS, 2007, 56 (02) :133-140
[23]   STABILITY AND ROBUST STABILITY OF LINEAR TIME-INVARIANT DELAY DIFFERENTIAL-ALGEBRAIC EQUATIONS [J].
Nguyen Huu Du ;
Vu Hoang Linh ;
Mehrmann, Volker ;
Do Duc Thuan .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2013, 34 (04) :1631-1654
[24]  
Rabier PJ, 2002, HDBK NUM AN, V8, P189
[25]  
Riaza R., 2008, DIFFERENTIAL ALGEBRA
[26]  
Trenn S, 2019, IEEE DECIS CONTR P, P989, DOI 10.1109/CDC40024.2019.9030146
[27]  
Venkatasubramanian V., 1994, 1994 IEEE International Symposium on Circuits and Systems (Cat. No.94CH3435-5), P49, DOI 10.1109/ISCAS.1994.409523
[28]   Analysis of nonlinear time-delay systems using modules over non-commutative rings [J].
Xia, XH ;
Márquez, LA ;
Zagalak, P ;
Moog, CH .
AUTOMATICA, 2002, 38 (09) :1549-1555
[29]   Unknown input observer for linear time-delay systems [J].
Zheng, Gang ;
Javier Bejarano, Francisco ;
Perruquetti, Wilfrid ;
Richard, Jean-Pierre .
AUTOMATICA, 2015, 61 :35-43
[30]   Asymptotic stability of Hessenberg delay differential-algebraic equations of retarded or neutral type [J].
Zhu, WJ ;
Petzold, LR .
APPLIED NUMERICAL MATHEMATICS, 1998, 27 (03) :309-325