Resolving the Scales of the Quark-Gluon Plasma with Energy Correlators

被引:39
作者
Andres C. [1 ]
Dominguez F. [2 ]
Elayavalli R.K. [3 ,4 ,5 ]
Holguin J. [1 ]
Marquet C. [1 ]
Moult I. [6 ]
机构
[1] CPHT, CNRS, Ecole Polytechnique, IP Paris, Palaiseau
[2] Instituto Galego de Física de Altas Enerxías (IGFAE), Universidade de Santiago de Compostela, Santiago de Compostela
[3] Wright Laboratory, Yale University, New Haven, 06511, CT
[4] Brookhaven National Laboratory, Upton, 11973, NY
[5] Department of Physics and Astronomy, Vanderbilt University, Nashville, 37240, TN
[6] Department of Physics, Yale University, New Haven, 06511, CT
基金
欧洲研究理事会; 欧盟地平线“2020”;
关键词
Colliding beam accelerators - Heavy ions - Ion sources - Quantum theory;
D O I
10.1103/PhysRevLett.130.262301
中图分类号
学科分类号
摘要
Jets provide us with ideal probes of the quark-gluon plasma (QGP) produced in heavy-ion collisions, since its dynamics at its different scales is imprinted into the multiscale substructure of the final state jets. We present a new approach to jet substructure in heavy-ion collisions based on the study of correlation functions of energy flow operators. By analyzing the two-point correlator of an in-medium quark jet, we demonstrate that the spectra of correlation functions robustly identify the scales defined by the properties of the QGP, particularly those associated with the onset of color coherence. © 2023 authors. Published by the American Physical Society. Published by the American Physical Society under the terms of the "https://creativecommons.org/licenses/by/4.0/"Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI. Funded by SCOAP3.
引用
收藏
相关论文
共 95 条
[1]  
Back B. B., Nucl. Phys, A757, (2005)
[2]  
Muller B., Nagle J. L., Annu. Rev. Nucl. Part. Sci, 56, (2006)
[3]  
Muller B., Schukraft J., Wyslouch B., Annu. Rev. Nucl. Part. Sci, 62, (2012)
[4]  
Connors M., Nattrass C., Reed R., Salur S., Rev. Mod. Phys, 90, (2018)
[5]  
Busza W., Rajagopal K., van der Schee W., Annu. Rev. Nucl. Part. Sci, 68, (2018)
[6]  
Cunqueiro L., Sickles A. M., Prog. Part. Nucl. Phys, 124, (2022)
[7]  
Apolinario L., Lee Y.-J., Winn M., Prog. Part. Nucl. Phys, 127, (2022)
[8]  
Geiger D. H., Marsden E., London, Edinburgh, Dublin Philos. Mag. J. Sci, 25, (1913)
[9]  
Dasgupta M., Fregoso A., Marzani S., Salam G. P., J. High Energy Phys, 2013
[10]  
Larkoski A. J., Salam G. P., Thaler J., J. High Energy Phys, 2013