GeoTorch: A Spatiotemporal Deep Learning Framework

被引:2
作者
Chowdhury, Kanchan [1 ]
Sarwat, Mohamed [1 ]
机构
[1] Arizona State Univ, Tempe, AZ 85287 USA
来源
30TH ACM SIGSPATIAL INTERNATIONAL CONFERENCE ON ADVANCES IN GEOGRAPHIC INFORMATION SYSTEMS, ACM SIGSPATIAL GIS 2022 | 2022年
关键词
spatiotemporal deep learning; satellite images; apache spark;
D O I
10.1145/3557915.3561036
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Deep learning frameworks, such as PyTorch and TensorFlow, support the implementation of various state-of-the-art machine learning models such as neural networks, hidden Markov models, and support vector machines. In recent years, many extensions of neural network models have been proposed in the literature targeting the applications of raster and spatiotemporal datasets. Implementing these models using existing deep learning frameworks requires nontrivial coding efforts from the developers because these extensions either are hybrid combinations of various categories of neural network models or differ extensively from state-of-the-art models supported by existing deep learning frameworks. Moreover, existing deep learning frameworks lack the support for scalable data preprocessing required to form trainable tensors from raw spatiotemporal datasets. To enable easy implementation of these neural network extensions, we present GeoTorch, a framework for deep learning and scalable data processing on raster and spatiotemporal datasets. Along with the state-of-the-art spatiotemporal models and ready-to-use benchmark datasets, we propose a data preprocessing module that allows the processing and transformation of spatiotemporal datasets in a cluster computing setting.
引用
收藏
页码:712 / 715
页数:4
相关论文
共 10 条
[1]   DeepSat - A Learning framework for Satellite Imagery [J].
Basu, Saikat ;
Ganguly, Sangram ;
Mukhopadhyay, Supratik ;
DiBiano, Robert ;
Karki, Manohar ;
Nemani, Ramakrishna .
23RD ACM SIGSPATIAL INTERNATIONAL CONFERENCE ON ADVANCES IN GEOGRAPHIC INFORMATION SYSTEMS (ACM SIGSPATIAL GIS 2015), 2015,
[2]  
Bayle Federico., 2017, Slum and Informal Settlements Detection
[3]   EuroSAT: A Novel Dataset and Deep Learning Benchmark for Land Use and Land Cover Classification [J].
Helber, Patrick ;
Bischke, Benjamin ;
Dengel, Andreas ;
Borth, Damian .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2019, 12 (07) :2217-2226
[4]   TaxiBJ21: An open crowd flow dataset based on Beijing taxi GPS trajectories [J].
Jiang, Weiwei .
INTERNET TECHNOLOGY LETTERS, 2022, 5 (02)
[5]  
Lin ZQ, 2019, AAAI CONF ARTIF INTE, P1020
[6]   DeepSat V2: feature augmented convolutional neural nets for satellite image classification [J].
Liu, Qun ;
Basu, Saikat ;
Ganguly, Sangram ;
Mukhopadhyay, Supratik ;
DiBiano, Robert ;
Karki, Manohar ;
Nemani, Ramakrishna .
REMOTE SENSING LETTERS, 2020, 11 (02) :156-165
[7]  
Mohajerani S, 2019, INT GEOSCI REMOTE SE, P1029, DOI [10.1109/IGARSS.2019.8898776, 10.1109/igarss.2019.8898776]
[8]   PyTorch Geometric Temporal: Spatiotemporal Signal Processing with Neural Machine Learning Models [J].
Rozemberczki, Benedek ;
Scherer, Paul ;
He, Yixuan ;
Panagopoulos, George ;
Riedel, Alexander ;
Astefanoaei, Maria ;
Kiss, Oliver ;
Beres, Ferenc ;
Lopez, Guzman ;
Collignon, Nicolas ;
Sarkar, Rik .
PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, CIKM 2021, 2021, :4564-4573
[9]  
Yao HX, 2019, AAAI CONF ARTIF INTE, P5668
[10]  
Zhang JB, 2017, AAAI CONF ARTIF INTE, P1655