Accelerating the calculation of electron-phonon coupling strength with machine learning

被引:14
作者
Zhong, Yang [1 ,2 ,3 ]
Liu, Shixu [1 ,2 ,3 ]
Zhang, Binhua [1 ,2 ,3 ]
Tao, Zhiguo [1 ,2 ,3 ]
Sun, Yuting [1 ,2 ,3 ]
Chu, Weibin [1 ,2 ,3 ]
Gong, Xin-Gao [1 ,2 ,3 ]
Yang, Ji-Hui [1 ,2 ,3 ]
Xiang, Hongjun [1 ,2 ,3 ]
机构
[1] Fudan Univ, Inst Computat Phys Sci, Key Lab Computat Phys Sci, State Key Lab Surface Phys,Minist Educ, Shanghai, Peoples R China
[2] Fudan Univ, Dept Phys, Shanghai, Peoples R China
[3] Shanghai Qi Zhi Inst, Shanghai, Peoples R China
来源
NATURE COMPUTATIONAL SCIENCE | 2024年 / 4卷 / 08期
基金
中国国家自然科学基金;
关键词
Gallium arsenide - III-V semiconductors - Phonons - Quantum chemistry;
D O I
10.1038/s43588-024-00668-7
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The calculation of electron-phonon couplings (EPCs) is essential for understanding various fundamental physical properties, including electrical transport, optical and superconducting behaviors in materials. However, obtaining EPCs through fully first-principles methods is notably challenging, particularly for large systems or when employing advanced functionals. Here we introduce a machine learning framework to accelerate EPC calculations by utilizing atomic orbital-based Hamiltonian matrices and gradients predicted by an equivariant graph neural network. We demonstrate that our method not only yields EPC values in close agreement with first-principles results but also enhances calculation efficiency by several orders of magnitude. Application to GaAs using the Heyd-Scuseria-Ernzerhof functional reveals the necessity of advanced functionals for accurate carrier mobility predictions, while for the large Kagome crystal CsV3Sb5, our framework reproduces the experimentally observed double domes in pressure-induced superconducting phase diagrams. This machine learning framework offers a powerful and efficient tool for the investigation of diverse EPC-related phenomena in complex materials. A machine learning framework is proposed to accurately predict electron-phonon coupling (EPC) strengths while reducing computational costs compared with first-principles methods. This approach facilitates EPC calculations with advanced functionals, allowing the accurate determination of real-world material properties such as carrier mobility and superconductivity.
引用
收藏
页码:615 / 625
页数:11
相关论文
共 45 条
[11]   Advanced capabilities for materials modelling with QUANTUM ESPRESSO [J].
Giannozzi, P. ;
Andreussi, O. ;
Brumme, T. ;
Bunau, O. ;
Nardelli, M. Buongiorno ;
Calandra, M. ;
Car, R. ;
Cavazzoni, C. ;
Ceresoli, D. ;
Cococcioni, M. ;
Colonna, N. ;
Carnimeo, I. ;
Dal Corso, A. ;
de Gironcoli, S. ;
Delugas, P. ;
DiStasio, R. A., Jr. ;
Ferretti, A. ;
Floris, A. ;
Fratesi, G. ;
Fugallo, G. ;
Gebauer, R. ;
Gerstmann, U. ;
Giustino, F. ;
Gorni, T. ;
Jia, J. ;
Kawamura, M. ;
Ko, H-Y ;
Kokalj, A. ;
Kucukbenli, E. ;
Lazzeri, M. ;
Marsili, M. ;
Marzari, N. ;
Mauri, F. ;
Nguyen, N. L. ;
Nguyen, H-V ;
Otero-de-la-Roza, A. ;
Paulatto, L. ;
Ponce, S. ;
Rocca, D. ;
Sabatini, R. ;
Santra, B. ;
Schlipf, M. ;
Seitsonen, A. P. ;
Smogunov, A. ;
Timrov, I. ;
Thonhauser, T. ;
Umari, P. ;
Vast, N. ;
Wu, X. ;
Baroni, S. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2017, 29 (46)
[12]   QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials [J].
Giannozzi, Paolo ;
Baroni, Stefano ;
Bonini, Nicola ;
Calandra, Matteo ;
Car, Roberto ;
Cavazzoni, Carlo ;
Ceresoli, Davide ;
Chiarotti, Guido L. ;
Cococcioni, Matteo ;
Dabo, Ismaila ;
Dal Corso, Andrea ;
de Gironcoli, Stefano ;
Fabris, Stefano ;
Fratesi, Guido ;
Gebauer, Ralph ;
Gerstmann, Uwe ;
Gougoussis, Christos ;
Kokalj, Anton ;
Lazzeri, Michele ;
Martin-Samos, Layla ;
Marzari, Nicola ;
Mauri, Francesco ;
Mazzarello, Riccardo ;
Paolini, Stefano ;
Pasquarello, Alfredo ;
Paulatto, Lorenzo ;
Sbraccia, Carlo ;
Scandolo, Sandro ;
Sclauzero, Gabriele ;
Seitsonen, Ari P. ;
Smogunov, Alexander ;
Umari, Paolo ;
Wentzcovitch, Renata M. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2009, 21 (39)
[13]   Electron-phonon interaction using Wannier functions [J].
Giustino, Feliciano ;
Cohen, Marvin L. ;
Louie, Steven G. .
PHYSICAL REVIEW B, 2007, 76 (16)
[14]   Electron-phonon interactions from first principles [J].
Giustino, Feliciano .
REVIEWS OF MODERN PHYSICS, 2017, 89 (01)
[15]   General framework for E(3)-equivariant neural network representation of density functional theory Hamiltonian [J].
Gong, Xiaoxun ;
Li, He ;
Zou, Nianlong ;
Xu, Runzhang ;
Duan, Wenhui ;
Xu, Yong .
NATURE COMMUNICATIONS, 2023, 14 (01)
[16]   Hybrid functionals based on a screened Coulomb potential [J].
Heyd, J ;
Scuseria, GE ;
Ernzerhof, M .
JOURNAL OF CHEMICAL PHYSICS, 2003, 118 (18) :8207-8215
[17]   DEFORMATION POTENTIALS AND ELECTRON-PHONON SCATTERING - 2 NEW THEOREMS [J].
KHAN, FS ;
ALLEN, PB .
PHYSICAL REVIEW B, 1984, 29 (06) :3341-3349
[18]   Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J].
Kresse, G ;
Furthmuller, J .
PHYSICAL REVIEW B, 1996, 54 (16) :11169-11186
[19]   Electron-phonon physics from first principles using the EPW code [J].
Lee, Hyungjun ;
Ponce, Samuel ;
Bushick, Kyle ;
Hajinazar, Samad ;
Lafuente-Bartolome, Jon ;
Leveillee, Joshua ;
Lian, Chao ;
Lihm, Jae-Mo ;
Macheda, Francesco ;
Mori, Hitoshi ;
Paudyal, Hari ;
Sio, Weng Hong ;
Tiwari, Sabyasachi ;
Zacharias, Marios ;
Zhang, Xiao ;
Bonini, Nicola ;
Kioupakis, Emmanouil ;
Margine, Elena R. ;
Giustino, Feliciano .
NPJ COMPUTATIONAL MATERIALS, 2023, 9 (01)
[20]   Electron-phonon coupling from GW perturbation theory: Practical workflow combining BerkeleyGW, ABINIT, and EPW [J].
Li, Zhenglu ;
Antonius, Gabriel ;
Chan, Yang-Hao ;
Louie, Steven G. .
COMPUTER PHYSICS COMMUNICATIONS, 2024, 295