A Comprehensive Survey on Deep Graph Representation Learning

被引:67
|
作者
Ju, Wei [1 ]
Fang, Zheng [2 ]
Gu, Yiyang [1 ]
Liu, Zequn [1 ]
Long, Qingqing [3 ]
Qiao, Ziyue [4 ]
Qin, Yifang [1 ]
Shen, Jianhao [1 ]
Sun, Fang [5 ]
Xiao, Zhiping [5 ]
Yang, Junwei [1 ]
Yuan, Jingyang [1 ]
Zhao, Yusheng [1 ]
Wang, Yifan [6 ]
Luo, Xiao [5 ]
Zhang, Ming [1 ]
机构
[1] Peking Univ, Sch Comp Sci, Natl Key Lab Multimedia Informat Proc, Beijing 100871, Peoples R China
[2] Peking Univ, Sch Intelligence Sci & Technol, Beijing 100871, Peoples R China
[3] Chinese Acad Sci, Comp Network Informat Ctr, Beijing 100086, Peoples R China
[4] Hong Kong Univ Sci & Technol, Artificial Intelligence Thrust, Guangzhou 511453, Peoples R China
[5] Univ Calif Los Angeles, Dept Comp Sci, Los Angeles, CA 90095 USA
[6] Univ Int Business & Econ, Sch Informat Technol & Management, Beijing 100029, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Deep learning on graphs; Graph representation learning; Graph neural network; Survey; NEURAL-NETWORK; DRUG DISCOVERY; ANOMALY DETECTION; DESIGN; DIMENSIONALITY; DISCRIMINATION; INFORMATION; PREDICTION; FRAMEWORK; DATABASE;
D O I
10.1016/j.neunet.2024.106207
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Graph representation learning aims to effectively encode high-dimensional sparse graph-structured data into low-dimensional dense vectors, which is a fundamental task that has been widely studied in a range of fields, including machine learning and data mining. Classic graph embedding methods follow the basic idea that the embedding vectors of interconnected nodes in the graph can still maintain a relatively close distance, thereby preserving the structural information between the nodes in the graph. However, this is sub -optimal due to: (i) traditional methods have limited model capacity which limits the learning performance; (ii) existing techniques typically rely on unsupervised learning strategies and fail to couple with the latest learning paradigms; (iii) representation learning and downstream tasks are dependent on each other which should be jointly enhanced. With the remarkable success of deep learning, deep graph representation learning has shown great potential and advantages over shallow (traditional) methods, there exist a large number of deep graph representation learning techniques have been proposed in the past decade, especially graph neural networks. In this survey, we conduct a comprehensive survey on current deep graph representation learning algorithms by proposing a new taxonomy of existing state -of -the -art literature. Specifically, we systematically summarize the essential components of graph representation learning and categorize existing approaches by the ways of graph neural network architectures and the most recent advanced learning paradigms. Moreover, this survey also provides the practical and promising applications of deep graph representation learning. Last but not least, we state new perspectives and suggest challenging directions which deserve further investigations in the future.
引用
收藏
页数:50
相关论文
共 50 条
  • [41] Graph matching survey for medical imaging: On the way to deep learning
    Laura, Cristina Oyarzun
    Wesarg, Stefan
    Sakas, Georgios
    METHODS, 2022, 202 : 3 - 13
  • [42] Revolutionizing physics: a comprehensive survey of machine learning applications
    Suresh, Rahul
    Bishnoi, Hardik
    Kuklin, Artem V.
    Parikh, Atharva
    Molokeev, Maxim
    Harinarayanan, R.
    Gharat, Sarvesh
    Hiba, P.
    FRONTIERS IN PHYSICS, 2024, 12
  • [43] GraphCPI: Graph Neural Representation Learning for Compound-Protein Interaction
    Quan, Zhe
    Guo, Yan
    Lin, Xuan
    Wang, Zhi-Jie
    Zeng, Xiangxiang
    2019 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2019, : 717 - 722
  • [44] Deep Learning for Medical Anomaly Detection - A Survey
    Fernando, Tharindu
    Gammulle, Harshala
    Denman, Simon
    Sridharan, Sridha
    Fookes, Clinton
    ACM COMPUTING SURVEYS, 2021, 54 (07)
  • [45] A Comprehensive Survey on Heart Sound Analysis in the Deep Learning Era
    Ren, Zhao
    Chang, Yi
    Nguyen, Thanh Tam
    Tan, Yang
    Qian, Kun
    Schuller, Bjorn W.
    IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE, 2024, 19 (03) : 42 - 57
  • [46] Deep Learning in Written Arabic Linguistic Studies: A Comprehensive Survey
    Almanea, Manar
    IEEE ACCESS, 2024, 12 : 172196 - 172233
  • [47] A comprehensive survey on deep-learning-based visual captioning
    Bowen Xin
    Ning Xu
    Yingchen Zhai
    Tingting Zhang
    Zimu Lu
    Jing Liu
    Weizhi Nie
    Xuanya Li
    An-An Liu
    Multimedia Systems, 2023, 29 (6) : 3781 - 3804
  • [48] A comprehensive survey on deep-learning-based visual captioning
    Xin, Bowen
    Xu, Ning
    Zhai, Yingchen
    Zhang, Tingting
    Lu, Zimu
    Liu, Jing
    Nie, Weizhi
    Li, Xuanya
    Liu, An-An
    MULTIMEDIA SYSTEMS, 2023, 29 (06) : 3781 - 3804
  • [49] A comprehensive survey on deep learning based malware detection techniques
    Gopinath, M.
    Sethuraman, Sibi Chakkaravarthy
    COMPUTER SCIENCE REVIEW, 2023, 47
  • [50] A comprehensive survey and taxonomy on privacy-preserving deep learning
    Tran, Anh-Tu
    Luong, The-Dung
    Huynh, Van-Nam
    NEUROCOMPUTING, 2024, 576