Shoreline Extraction using High Resolution Satellite Imagery at Start Bay, UK

被引:1
|
作者
McAllister, Emma [1 ]
Payo, Andres [2 ]
Novellino, Alessandro [2 ]
Dolphin, Tony [3 ]
Medina-Lopez, Encarni [1 ]
机构
[1] Univ Edinburgh, Inst Infrastruct & Environm, Sch Engn, Edinburgh EH9 3JL, Midlothian, Scotland
[2] British Geol Survey, Nottingham NG12 5GG, England
[3] Ctr Environm Fisheries & Aquaculture Sci, Lowestoft NR33 0HT, Suffolk, England
来源
PROCEEDINGS OF THE 39TH IAHR WORLD CONGRESS | 2022年
关键词
Remote Sensing; Machine Learning; Coastal Erosion;
D O I
10.3850/IAHR-39WC2521716X20221201
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Coastlines are under pressure from the threat of future Sea Level Rise (SLR). Coastal engineers need a way to monitor shorelines changes over short- and long-term timescales, for the current and future protection of coastal communities. This study looks at the capabilities of high-resolution satellite imagery from Sentinel-2 (10m) and how a method can be developed to be able to extract consistent shorelines using coastal indicators as a proxy line. Start Bay, UK was used in this study to extract shoreline features using the Machine Learning (ML) techniques: Classification and Regression Trees (CART) and Artificial Neural Networks (ANN). The results highlight that the shoreline indicator, the wet/dry boundary can be extracted using the ML techniques with medium resolution satellite imagery with an average of <15m from validation datasets.
引用
收藏
页码:5811 / 5820
页数:10
相关论文
共 50 条
  • [1] Feature extraction using very high resolution satellite imagery
    Xiao, YG
    Lim, SK
    Tan, TS
    Tay, SC
    IGARSS 2004: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM PROCEEDINGS, VOLS 1-7: SCIENCE FOR SOCIETY: EXPLORING AND MANAGING A CHANGING PLANET, 2004, : 2004 - 2007
  • [2] Extraction of coral bleaching by using high resolution satellite imagery
    Shinya, K
    Nagayoshi, T
    Kang, D
    Hayao, M
    2004 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN & CYBERNETICS, VOLS 1-7, 2004, : 6417 - 6422
  • [3] High Resolution Satellite Images for Instantaneous Shoreline Extraction Using New Enhancement Algorithms
    Dominici, Donatella
    Zollini, Sara
    Alicandro, Maria
    Della Torre, Francesca
    Buscema, Paolo Massimo
    Baiocchi, Valerio
    GEOSCIENCES, 2019, 9 (03)
  • [4] Coastline extraction using high resolution WorldView-2 satellite imagery
    Maglione, Pasquale
    Parente, Claudio
    Vallario, Andrea
    EUROPEAN JOURNAL OF REMOTE SENSING, 2014, 47 : 685 - 699
  • [5] New Methodology for Shoreline Extraction Using Optical and Radar (SAR) Satellite Imagery
    Zollini, Sara
    Dominici, Donatella
    Alicandro, Maria
    Cuevas-Gonzalez, Maria
    Angelats, Eduard
    Ribas, Francesca
    Simarro, Gonzalo
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2023, 11 (03)
  • [6] Coastline extraction from repeat high resolution satellite imagery
    Dai, Chunli
    Howat, Ian M.
    Larour, Eric
    Husby, Erik
    REMOTE SENSING OF ENVIRONMENT, 2019, 229 : 260 - 270
  • [7] Geometric integration of aerial and high-resolution satellite imagery and application in shoreline mapping
    Li, Rongxing
    Deshpande, Sagar
    Niu, Xutong
    Zhou, Feng
    Di, Kaichang
    Wu, Bo
    MARINE GEODESY, 2008, 31 (03) : 143 - 159
  • [8] Detection and Extraction of Roads using Cartosat-2 High Resolution Satellite Imagery
    Vani, K. Suvarna
    Raj, Arul M.
    Padmaja, M.
    Kumar, K. Praveen
    Jitendra, A.
    Raja, Ravi A.
    PROCEEDINGS OF THE 2020 3RD INTERNATIONAL CONFERENCE ON IMAGE AND GRAPHICS PROCESSING (ICIGP 2020), 2020, : 7 - 11
  • [9] Multispectral satellite imagery and machine learning for the extraction of shoreline indicators
    McAllister, Emma
    Payo, Andres
    Novellino, Alessandro
    Dolphin, Tony
    Medina-Lopez, Encarni
    COASTAL ENGINEERING, 2022, 174
  • [10] UPDATING MAPS USING HIGH RESOLUTION SATELLITE IMAGERY
    Alrajhi, Muhamad
    Janjua, Khurram Shahzad
    Khan, Mohammad Afroz
    Alobeid, Abdalla
    XXIII ISPRS Congress, Commission IV, 2016, 41 (B4): : 711 - 719