Modeling and test of a thermosyphon loop for the cooling of a megawatt-range power electronics converter

被引:0
作者
Moustaid M. [1 ]
Platel V. [2 ]
Guillet M. [1 ]
Reynes H. [1 ]
Buttay C. [3 ]
机构
[1] SuperGrid Institute
[2] Universite de Pau et des Pays de l'Adour, E2S UPPA, LaTEP, Tarbes
[3] Univ Lyon, CNRS, INSA Lyon, université Claude Bernard Lyon 1, Ecole Centrale de Lyon, Ampère, UMR5005, Villeurbanne
关键词
Loop Thermosyphon; Novec; 649; Passive cooling; Power Electronics;
D O I
10.1016/j.ijft.2021.100129
中图分类号
学科分类号
摘要
A thermosyphon loop, designed for the thermal management of a large Medium voltage power converter 5 MW overall, corresponding to a 2.4 kW thermal load per cooling unit) is presented. The device is mainly made of an evaporator, a condenser and a reservoir connected with plastic liquid and vapor lines. Novec 649 (3M) has been chosen as the working fluid due to environmental and electrical concerns. A model of the loop is described, and its predictions are compared with experiments. A first comparison yields a maximum mean deviation of 20 % between experimental results and numerical simulation at the maximum coolant temperature. The main sources of errors are identified, and improvements are proposed for better model accuracy. © 2022 The Authors
引用
收藏
相关论文
共 27 条
[1]  
Cooper M., Heat flow rates in saturated nucleate pool boiling-a wide-ranging examination using reduced properties, Advances in Heat Transfer, Vol. 16, pp. 157-239, (1984)
[2]  
Louahlia-Gualous H., Le Masson S., Chahed A., An experimental study of evaporation and condensation heat transfer coefficients for looped thermosyphon, Appl. Therm. Eng., 110, pp. 931-940, (2017)
[3]  
Millan J., Godignon P., Perpina X., Perez-Tomas A., Rebollo J., A survey of wide bandgap power semiconductor devices, IEEE Trans. Power Electron., 29, 5, pp. 2155-2163, (2014)
[4]  
Reynes H., Maneiro J., Buttay C., Dworakowski P., Thermal management optimization of a 5 MW power electronic converter, 12th European Advanced Technology Workshop on Micropackaging and Thermal Management, (2017)
[5]  
Jung J.-Y., Oh H.-S., Lee D.K., Choi K.B., Dong S.K., Kwak H.-Y., A capillary-pumped loop (CPL) with microcone-shaped capillary structure for cooling electronic devices, J. Micromech. Microeng., 18, 1, (2007)
[6]  
Chehade A., Louahlia-Gualous H., Le Masson S., Lepinasse E., Experimental investigations and modeling of a loop thermosyphon for cooling with zero electrical consumption, Appl. Therm. Eng., 87, pp. 559-573, (2015)
[7]  
Smith K., Byrne G., Kempers R., Robinson A., Electrohydrodynamic augmentation of a reflux thermosyphon, Exp. Therm Fluid Sci., 79, pp. 175-186, (2016)
[8]  
Mayer A.H., Magnetic Two-Phase Thermosiphon, (1983)
[9]  
Reay D., McGlen R., Kew P., Heat Pipes: Theory, Design and Applications, (2013)
[10]  
Cao J., Zheng Z., Asim M., Hu M., Wang Q., Su Y., Pei G., Leung M.K., A review on independent and integrated/coupled two-phase loop thermosyphons, Appl. Energy, 280, (2020)