Biofortification of Verdin Beans (Phaseolus vulgaris L.) With Chelate and Iron Sulfate

被引:0
|
作者
Felix, Jean W. [1 ]
Sanchez-Chavez, Esteban [2 ]
Tosquy-Valle, Oscar [3 ]
Preciado-Rangel, Pablo [4 ]
Marquez-Quiroz, Cesar [1 ]
de la Cruz-Lazaro, Efrain [1 ]
机构
[1] Univ Juarez Autonoma Tabasco, Div Acad Ciencias Agropecuarias, Carretera Villahermosa Teapa Km 25, Villahermosa 86280, Tabasco, Mexico
[2] Ctr Invest Alimentac & Desarrollo, AC Ave Cuarta 3820, Delicias 33089, Chihuahua, Mexico
[3] Inst Nacl Invest Forest Agr & Pecuarias, CIRGOC CE Cotaxtla, Carretera Fed Veracruz Cordoba Km 34-5, Medellin De Bravo 94270, Veracruz, Mexico
[4] Inst Tecnol Torreon, Carretera Torreon San Pedro Km 7-5, Torreon 27170, Coahuila, Mexico
关键词
antioxidant activity; bioactive compounds; total phenols; AGRONOMIC BIOFORTIFICATION; MICRONUTRIENTS; SYSTEM; PLANTS; CROPS;
D O I
10.28940/terra.v42i0.1831
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Biofortification is a process that increases the nutrient content in plants' edible parts. The objective was to determine the effect of iron chelate and iron sulfathe applied through foliar and edaphic methods on the mineral, nutritional, and bioactive compound content of the Verdin bean grain. Foliar doses of 0, 25, 50 and 100 mM of iron chelate and edaphic doses of 0, 0.25 and 0.50 g per plant of iron sulfate were applied, which generated 12 treatments that were evaluated in a randomized block design in 4x3 factorial arrangement where the first factor was the foliar doses, and the second factor was the edaphic doses. The content of iron, zinc, manganese, nickel, calcium and potassium, ash, proteins, fats, fiber, total phenols, flavonoid, anthocyanins, and antioxidant capacity were determined in the grain. The individual applications of foliar and edaphic iron had significant effects (P <= 0.05), with the edaphic dose of 0.50 g presenting the greatest increases in iron (17.38%), nickel (20.69%), protein (10.93%), crude fiber (5.82%) and antioxidant capacity (2.84%) regarding doses without edaphic iron. The simultaneous application of edaphic and foliar iron showed statistical differences (P <= 0.05), presenting the greatest increase in iron (75.91%), nickel (30.61%), ash (114.69%), protein (18.14%) and crude fiber (15.34%) with the 100 mM foliar - 0.50 g edaphic combination regarding to the combination without iron. For individual and simultaneous iron applications, it was observed that increasing the foliar and edaphic doses had antagonistic effects on the zinc and fat content. The application of iron can be beneficial to increase the mineral and nutritional content, and some bioactive compounds, but care must be taken to minimize the negative effects on other nutrients and properties of the grain.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Beans in Europe: origin and structure of the European landraces of Phaseolus vulgaris L.
    Angioi, S. A.
    Rau, D.
    Attene, G.
    Nanni, L.
    Bellucci, E.
    Logozzo, G.
    Negri, V.
    Zeuli, P. L. Spagnoletti
    Papa, R.
    THEORETICAL AND APPLIED GENETICS, 2010, 121 (05) : 829 - 843
  • [32] Implications of mitotic and meiotic irregularities in common beans (Phaseolus vulgaris L.)
    Lima, D. C.
    Braz, G. T.
    dos Reis, G. B.
    Techio, V. H.
    Davide, L. C.
    Abreu, A. de F. B.
    GENETICS AND MOLECULAR RESEARCH, 2016, 15 (02)
  • [33] Nutritional and protein quality of dry Brazilian beans (Phaseolus vulgaris L.)
    Rezende, Amanda Alves
    Bertoldo Pacheco, Maria Teresa
    Nunes da Silva, Vera Sonia
    Pinto de Castro Ferreira, Tania Aparecida
    FOOD SCIENCE AND TECHNOLOGY, 2018, 38 (03): : 421 - 427
  • [34] Deterioration of green beans (Phaseolus vulgaris L.) as affected by storage methods
    Babatola, L. A.
    Adewoyin, O. B.
    XXXI INTERNATIONAL HORTICULTURAL CONGRESS, IHC2022: INTERNATIONAL SYMPOSIUM ON POSTHARVEST TECHNOLOGIES TO REDUCE FOOD LOSSES, 2023, 1364 : 417 - 423
  • [35] Hardness of carioca beans (Phaseolus vulgaris L.) as affected by cooking methods
    Siqueira, Beatriz dos Santos
    Vianello, Rosana Pereira
    Frenandes, Katia Flavia
    Bassinello, Priscila Zaczuk
    LWT-FOOD SCIENCE AND TECHNOLOGY, 2013, 54 (01) : 13 - 17
  • [36] Beans in Europe: origin and structure of the European landraces of Phaseolus vulgaris L.
    S. A. Angioi
    D. Rau
    G. Attene
    L. Nanni
    E. Bellucci
    G. Logozzo
    V. Negri
    P. L. Spagnoletti Zeuli
    R. Papa
    Theoretical and Applied Genetics, 2010, 121 : 829 - 843
  • [37] Rhizobia Contribute to Salinity Tolerance in Common Beans (Phaseolus vulgaris L.)
    Wekesa, Clabe
    Asudi, George O.
    Okoth, Patrick
    Reichelt, Michael
    Muoma, John O.
    Furch, Alexandra C. U.
    Oelmueller, Ralf
    CELLS, 2022, 11 (22)
  • [38] ORGANIC VERSUS SYNTHETIC FERTILISATION OF BEANS (PHASEOLUS VULGARIS L.) IN MEXICO
    Dagoberto Armenta-Bojorquez, Adolfo
    Rubili Roblero-Ramirez, Hugo
    Ricardo Camacho-Baez, Jesus
    Mundo-Ocampo, Manuel
    Garcia-Gutierrez, Cipriano
    Armenta-Medina, Alma
    EXPERIMENTAL AGRICULTURE, 2016, 52 (01) : 154 - 162
  • [39] Some engineering properties of white kidney beans (Phaseolus vulgaris L.)
    Isik, Esref
    Unal, Halil
    AFRICAN JOURNAL OF BIOTECHNOLOGY, 2011, 10 (82): : 19126 - 19136
  • [40] Quality of beans (Phaseolus vulgaris L.) after postharvest microwave treatments
    Elena Sosa-Morales, Maria
    Aguilar-Morales, Mariana
    Ceron-Garcia, Abel
    Rojas-Laguna, Roberto
    Lopez-Malo, Aurelio
    JOURNAL OF MICROWAVE POWER AND ELECTROMAGNETIC ENERGY, 2017, 51 (03) : 178 - 186