Biofortification of Verdin Beans (Phaseolus vulgaris L.) With Chelate and Iron Sulfate

被引:0
|
作者
Felix, Jean W. [1 ]
Sanchez-Chavez, Esteban [2 ]
Tosquy-Valle, Oscar [3 ]
Preciado-Rangel, Pablo [4 ]
Marquez-Quiroz, Cesar [1 ]
de la Cruz-Lazaro, Efrain [1 ]
机构
[1] Univ Juarez Autonoma Tabasco, Div Acad Ciencias Agropecuarias, Carretera Villahermosa Teapa Km 25, Villahermosa 86280, Tabasco, Mexico
[2] Ctr Invest Alimentac & Desarrollo, AC Ave Cuarta 3820, Delicias 33089, Chihuahua, Mexico
[3] Inst Nacl Invest Forest Agr & Pecuarias, CIRGOC CE Cotaxtla, Carretera Fed Veracruz Cordoba Km 34-5, Medellin De Bravo 94270, Veracruz, Mexico
[4] Inst Tecnol Torreon, Carretera Torreon San Pedro Km 7-5, Torreon 27170, Coahuila, Mexico
关键词
antioxidant activity; bioactive compounds; total phenols; AGRONOMIC BIOFORTIFICATION; MICRONUTRIENTS; SYSTEM; PLANTS; CROPS;
D O I
10.28940/terra.v42i0.1831
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Biofortification is a process that increases the nutrient content in plants' edible parts. The objective was to determine the effect of iron chelate and iron sulfathe applied through foliar and edaphic methods on the mineral, nutritional, and bioactive compound content of the Verdin bean grain. Foliar doses of 0, 25, 50 and 100 mM of iron chelate and edaphic doses of 0, 0.25 and 0.50 g per plant of iron sulfate were applied, which generated 12 treatments that were evaluated in a randomized block design in 4x3 factorial arrangement where the first factor was the foliar doses, and the second factor was the edaphic doses. The content of iron, zinc, manganese, nickel, calcium and potassium, ash, proteins, fats, fiber, total phenols, flavonoid, anthocyanins, and antioxidant capacity were determined in the grain. The individual applications of foliar and edaphic iron had significant effects (P <= 0.05), with the edaphic dose of 0.50 g presenting the greatest increases in iron (17.38%), nickel (20.69%), protein (10.93%), crude fiber (5.82%) and antioxidant capacity (2.84%) regarding doses without edaphic iron. The simultaneous application of edaphic and foliar iron showed statistical differences (P <= 0.05), presenting the greatest increase in iron (75.91%), nickel (30.61%), ash (114.69%), protein (18.14%) and crude fiber (15.34%) with the 100 mM foliar - 0.50 g edaphic combination regarding to the combination without iron. For individual and simultaneous iron applications, it was observed that increasing the foliar and edaphic doses had antagonistic effects on the zinc and fat content. The application of iron can be beneficial to increase the mineral and nutritional content, and some bioactive compounds, but care must be taken to minimize the negative effects on other nutrients and properties of the grain.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Diversification and Population Structure in Common Beans (Phaseolus vulgaris L.)
    Blair, Matthew W.
    Soler, Alvaro
    Cortes, Andres J.
    PLOS ONE, 2012, 7 (11):
  • [22] Iron and Zinc Bioavailabilities to Pigs from Red and White Beans (Phaseolus vulgaris L.) Are Similar
    Tako, Elad
    Glahn, Raymond P.
    Laparra, Jose M.
    Welch, Ross M.
    Lei, Xingen
    Kelly, James D.
    Rutzke, Mike A.
    Miller, Dennis D.
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2009, 57 (08) : 3134 - 3140
  • [23] Physicochemical Characterization and Functional Potential of Phaseolus vulgaris L. and Phaseolus coccineus L. Landrace Green Beans
    Aquino-Bolanos, Elia Nora
    Garzon-Garcia, Alma Karina
    Alba-Jimenez, Jimena Esther
    Chavez-Servia, Jose Luis
    Vera-Guzman, Araceli Minerva
    Carrillo-Rodriguez, Jose Cruz
    Santos-Basurto, Manuel Alberto
    AGRONOMY-BASEL, 2021, 11 (04):
  • [24] Iron bioavailability of common beans (Phaseolus vulgaris L.) intrinsically labeled with 59Fe
    Brigide, Priscila
    Ataide, Terezinha da R.
    Canniatti-Brazaca, Solange G.
    Baptista, Antonio S.
    Abdalla, Adibe L.
    Nascimento Filho, Virgilio F.
    Piedade, Sonia M. S.
    Bueno, Nassib B.
    Sant'Ana, Antonio E. G.
    JOURNAL OF TRACE ELEMENTS IN MEDICINE AND BIOLOGY, 2014, 28 (03) : 260 - 265
  • [25] Effect of cooking on the composition of beans (Phaseolus vulgaris L.) and chickpeas (Cicer arietinum L.)
    Wang, N.
    Hatcher, D. W.
    Tyler, R. T.
    Toews, R.
    Gawalko, E. J.
    FOOD RESEARCH INTERNATIONAL, 2010, 43 (02) : 589 - 594
  • [26] Natural occurrence of free anthocyanin aglycones in beans (Phaseolus vulgaris L.)
    Macz-Pop, GA
    Rivas-Gonzalo, JC
    Pérez-Alonso, JJ
    González-Paramás, AM
    FOOD CHEMISTRY, 2006, 94 (03) : 448 - 456
  • [27] Antinutritional factors in anasazi and other pinto beans (Phaseolus vulgaris L.)
    J. K. P. Weder
    L. Telek
    M. Vozári-Hampe
    H. S. Saini
    Plant Foods for Human Nutrition, 1997, 51 : 85 - 98
  • [28] Beans (Phaseolus vulgaris L.): whole seeds with complex chemical composition
    Basso Los, Francine Gomes
    Ferreira Zielinski, Acacio Antonio
    Wojeicchowski, Jose Pedro
    Nogueira, Alessandro
    Demiate, Ivo Mottin
    CURRENT OPINION IN FOOD SCIENCE, 2018, 19 : 63 - 71
  • [29] Polyphenols in wild and weedy Mexican common beans (Phaseolus vulgaris L.)
    Espinosa-Alonso, L. Gabriela
    Lygin, Anatoly
    Widholm, Jack M.
    Valverde, Maria E.
    Paredes-Lopez, Octavio
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2006, 54 (12) : 4436 - 4444
  • [30] Effect of nutritional elements on the productivity of common beans (Phaseolus vulgaris L.)
    Juskeviciene, D.
    Karkleliene, R.
    Radzevicius, A.
    Kavaliauskaite, D.
    XXXI INTERNATIONAL HORTICULTURAL CONGRESS, IHC2022: INTERNATIONAL SYMPOSIUM ON PLANT NUTRITION, FERTILIZATION, SOIL MANAGEMENT, 2023, 1375 : 161 - 167