How Video Super-Resolution and Frame Interpolation Mutually Benefit

被引:8
作者
Zhou, Chengcheng [1 ]
Lu, Zongqing [1 ]
Li, Linge [2 ]
Yan, Qiangyu [2 ]
Xue, Jing-Hao [3 ]
机构
[1] Tsinghua Univ, Beijing, Peoples R China
[2] Huawei Technol Co Ltd, Shenzhen, Guangdong, Peoples R China
[3] UCL, London, England
来源
PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2021 | 2021年
关键词
Video super-resolution; video frame interpolation; spatial-temporal; inter-dependence;
D O I
10.1145/3474085.3475672
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Video super-resolution (VSR) and video frame interpolation (VFI) are inter-dependent for enhancing videos of low resolution and low frame rate. However, most studies treat VSR and temporal VFI as independent tasks. In this work, we design a spatial-temporal superresolution network based on exploring the interaction between VSR and VFI. The main idea is to improve the middle frame of VFI by the super-resolution (SR) frames and feature maps from VSR. In the meantime, VFI also provides extra information for VSR and thus, through interacting, the SR of consecutive frames of the original video can also be improved by the feedback from the generated middle frame. Drawing on this, our approach leverages a simple interaction of VSR and VFI and achieves state-of-the-art performance on various datasets. Due to such a simple strategy, our approach is universally applicable to any existing VSR or VFI networks for effectively improving their video enhancement performance.
引用
收藏
页码:5445 / 5453
页数:9
相关论文
共 36 条
  • [1] A database and evaluation methodology for optical flow
    Baker, Simon
    Scharstein, Daniel
    Lewis, J. P.
    Roth, Stefan
    Black, Michael J.
    Szeliski, Richard
    [J]. 2007 IEEE 11TH INTERNATIONAL CONFERENCE ON COMPUTER VISION, VOLS 1-6, 2007, : 588 - 595
  • [2] Depth-Aware Video Frame Interpolation
    Bao, Wenbo
    Lai, Wei-Sheng
    Ma, Chao
    Zhang, Xiaoyun
    Gao, Zhiyong
    Yang, Ming-Hsuan
    [J]. 2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 3698 - 3707
  • [3] MEMC-Net: Motion Estimation and Motion Compensation Driven Neural Network for Video Interpolation and Enhancement
    Bao, Wenbo
    Lai, Wei-Sheng
    Zhang, Xiaoyun
    Gao, Zhiyong
    Yang, Ming-Hsuan
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2021, 43 (03) : 933 - 948
  • [4] Bao WB, 2017, IEEE IMAGE PROC, P4038, DOI 10.1109/ICIP.2017.8297041
  • [5] A Naturalistic Open Source Movie for Optical Flow Evaluation
    Butler, Daniel J.
    Wulff, Jonas
    Stanley, Garrett B.
    Black, Michael J.
    [J]. COMPUTER VISION - ECCV 2012, PT VI, 2012, 7577 : 611 - 625
  • [6] Design, Analysis and Testing of a Component Head Injury Criterion Tester for Pilot
    Cheng, Nannan
    Wang, Liang
    Liu, Yongguang
    Zhang, Chunyou
    [J]. IEEE ACCESS, 2019, 7 : 114888 - 114896
  • [7] Cheng XH, 2020, AAAI CONF ARTIF INTE, V34, P10607
  • [8] Choi M., 2020, CVPR, P9444, DOI DOI 10.1109/CVPR42600.2020.00946
  • [9] Choi M, 2020, AAAI CONF ARTIF INTE, V34, P10663
  • [10] Fourure D., 2017, P BRIT MACH VIS C