An intuitionistic fuzzy three-way decision method based on intuitionistic fuzzy similarity degrees

被引:0
|
作者
Liu J. [1 ]
Zhou X. [1 ,2 ]
Li H. [1 ,2 ]
Huang B. [3 ]
Gu P. [1 ]
机构
[1] School of Management and Engineering, Nanjing University, Nanjing
[2] Research Center for Novel Technology of Intelligent Equipment, Nanjing University, Nanjing
[3] School of Information Engineering, Nanjing Audit University, Nanjing
来源
Xitong Gongcheng Lilun yu Shijian/System Engineering Theory and Practice | 2019年 / 39卷 / 06期
基金
中国国家自然科学基金;
关键词
Bayesian theory; Intuitionistic fuzzy decision systems; Intuitionistic fuzzy similarity degrees; Three-way decisions;
D O I
10.12011/1000-6788-2017-1800-15
中图分类号
学科分类号
摘要
With respect to these problems with unconsideration of practical semantics of membership and non-membership degrees and even "counterintuitive results" in some cases. In this paper, we propose a novel intuitionistic fuzzy similarity degree and then introduce it to intuitionistic fuzzy decision systems, in which the (α, β)-level cut sets under intuitionistic fuzzy similarity degrees are defined and the associated properties are given. The (α,β)-lower and upper approximation of the objective set and its three regions:positive region, negative region and boundary region are induced by using the rough membership function served as the evaluation function. Considering different risk attitudes of decision makers, an intuitionistic fuzzy three-way decision model with multiple risk preference is constructed based on Bayesian theory and the corresponding decision rules are derived. Based on which we propose an intuitionistic fuzzy three-way decision method on the basis of intuitionistic fuzzy similarity degrees. Finally, a numerical example is given to show its feasibility and effectiveness. © 2019, Editorial Board of Journal of Systems Engineering Society of China. All right reserved.
引用
收藏
页码:1550 / 1564
页数:14
相关论文
共 40 条
  • [1] Yao Y.Y., Wong S.K.M., Lingras P., A decision-theoretic rough set model, Methodologies for Intelligent Systems, 5, pp. 17-24, (1990)
  • [2] Yao Y.Y., Three-way decision with probabilistic rough sets, Information Sciences, 180, 3, pp. 341-353, (2010)
  • [3] Yao Y.Y., The superiority of three-way decisions in probabilistic rough set models, Information Sciences, 181, pp. 1080-1096, (2011)
  • [4] Ju H.R., Zhou X.Z., Yang P., Et al., Test-cost-sensitive based rough set approach, Systems Engineering—Theory & Practice, 37, 1, pp. 228-240, (2017)
  • [5] Liu D., Liang D.C., Three-way decisions in ordered decision system, Knowledge-Based Systems, 137, pp. 182-195, (2017)
  • [6] Zhang Q.H., Lu G.G., Chen Y.H., Et al., A dynamic three-way decision model based on the updating of attribute values, Knowledge-Based Systems, 142, pp. 71-84, (2018)
  • [7] Li H.X., Zhou X.Z., Risk decision making based on decision-theoretic rough set: A multi-view decision model, International Journal of Computational Intelligence Systems, 4, 1, pp. 1-11, (2011)
  • [8] Qian J., Dang C.Y., Yue X.D., Et al., Attribute reduction for sequential three-way decisions under dynamic granulation, International Journal of Approximate Reasoning, 85, pp. 196-216, (2017)
  • [9] Li H.X., Zhang L.B., Huang B., Et al., Sequential three-way decision and granulation for cost-sensitive face recognition, Knowledge-Based Systems, 91, 1, pp. 241-251, (2016)
  • [10] Liu D., Li T.R., Liang D.C., Three-way government decision analysis with decision-theoretic rough sets, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 20, pp. 119-132, (2012)