Thermal data-driven model reduction for enhanced battery health monitoring

被引:6
作者
Khasin, Michael [1 ]
Mehta, Mohit R. [2 ]
Kulkarni, Chetan [2 ]
Lawson, John W. [1 ]
机构
[1] NASA, Intelligent Syst Div, Ames Res Ctr, Moffett Field, CA 94035 USA
[2] KBR Inc, Intelligent Syst Div, NASA, Ames Res Ctr, Moffett Field, CA 94035 USA
关键词
Batteries; Modeling; Parameter estimation; System identification; LI-ION BATTERIES; CHALLENGES; ENTROPY; CELLS;
D O I
10.1016/j.jpowsour.2024.234442
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Electric aviation faces a major challenge of avoiding potentially catastrophic consequences of the battery's thermal runaway while keeping the weight of the battery low. Detection of early warning signals of battery failures requires accurate monitoring of the battery's health throughout its lifespan. However, identifying the parameters of the battery from field data is notoriously difficult. We investigate this problem within the framework of modeling the temperature dynamics of a Li -ion cell during tests simulating loading in electric aircraft flights. It is found that most of the parameters of a higher -fidelity physics -based thermal model cannot be identified from the simulated flight data. To resolve this issue, we reduce the higher -fidelity thermal model to a model with fewer parameters. The resulting reduced -order model can predict temperature dynamics accurately and is identifiable throughout the cell's lifespan which allows using the model's parameters to monitor the health of the aging cell.
引用
收藏
页数:12
相关论文
共 54 条
[1]   Entropy changes due to structural transformation in the graphite anode and phase change of the LiCoO2 cathode [J].
Al Hallaj, S ;
Venkatachalapathy, R ;
Prakash, J ;
Selman, JR .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2000, 147 (07) :2432-2436
[2]   Online Capacity Estimation for Lithium-Ion Battery Cells via an Electrochemical Model-Based Adaptive Interconnected Observer [J].
Allam, Anirudh ;
Onori, Simona .
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2021, 29 (04) :1636-1651
[3]   A thermal model for Li-ion batteries operating under dynamic conditions [J].
Amini, Ali ;
Ozdemir, Tanilay ;
Ekici, Ozgur ;
Baslamisli, S. Caglar ;
Koksal, Murat .
APPLIED THERMAL ENGINEERING, 2021, 185
[4]  
[Anonymous], 2023, Urban Air Mobility (UAM) Concept of Operation (ConOps) v2.0
[5]  
[Anonymous], 2014, NASA AMES PROGNOSTIC
[6]   Review-"Knees" in Lithium-Ion Battery Aging Trajectories [J].
Attia, Peter M. ;
Bills, Alexander ;
Brosa Planella, Ferran ;
Dechent, Philipp ;
dos Reis, Goncalo ;
Dubarry, Matthieu ;
Gasper, Paul ;
Gilchrist, Richard ;
Greenbank, Samuel ;
Howey, David ;
Liu, Ouyang ;
Khoo, Edwin ;
Preger, Yuliya ;
Soni, Abhishek ;
Sripad, Shashank ;
Stefanopoulou, Anna G. ;
Sulzer, Valentin .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2022, 169 (06)
[7]   A Parametric Open Circuit Voltage Model for Lithium Ion Batteries [J].
Birkl, C. R. ;
McTurk, E. ;
Roberts, M. R. ;
Bruce, P. G. ;
Howey, D. A. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (12) :A2271-A2280
[8]   Identifiability and Parameter Estimation of the Single Particle Lithium-Ion Battery Model [J].
Bizeray, Adrien M. ;
Kim, Jin-Ho ;
Duncan, Stephen R. ;
Howey, David A. .
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2019, 27 (05) :1862-1877
[9]  
Bole B., 2014, NNUAL C PHM SOC, P1, DOI [10.36001/phmconf.2014.v6i1.2490, DOI 10.36001/PHMCONF.2014.V6I1.2490]
[10]  
Chin J., 2021, AIAA Propulsion and Energy Forum, DOI [10.2514/6.2021-3316, DOI 10.2514/6.2021-3316]