Large-FOV 3D localization microscopy by spatially variant point spread function generation

被引:7
作者
Xiao, Dafei [1 ]
Kedem Orange, Reut [1 ]
Opatovski, Nadav [1 ]
Parizat, Amit [2 ]
Nehme, Elias [2 ,3 ]
Alalouf, Onit [2 ]
Shechtman, Yoav [1 ,2 ,4 ]
机构
[1] Technion Israel Inst Technol, Russell Berrie Nanotechnol Inst, Haifa, Israel
[2] Technion Israel Inst Technol, Dept Biomed Engn, Haifa, Israel
[3] Technion Israel Inst Technol, Dept Elect & Comp Engn, Haifa, Israel
[4] Univ Texas Austin, Walker Dept Mech Engn, Austin, TX 78712 USA
基金
以色列科学基金会;
关键词
SINGLE-MOLECULE LOCALIZATION; DIFFRACTION-LIMIT; PHASE RETRIEVAL; FIELD; ABERRATIONS; TRACKING; DEPTH;
D O I
10.1126/sciadv.adj3656
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Accurate characterization of the microscopic point spread function (PSF) is crucial for achieving high-performance localization microscopy (LM). Traditionally, LM assumes a spatially invariant PSF to simplify the modeling of the imaging system. However, for large fields of view (FOV) imaging, it becomes important to account for the spatially variant nature of the PSF. Here, we propose an accurate and fast principal components analysis-based field-dependent 3D PSF generator (PPG3D) and localizer for LM. Through simulations and experimental three-dimensional (3D) single-molecule localization microscopy (SMLM), we demonstrate the effectiveness of PPG3D, enabling super-resolution imaging of mitochondria and microtubules with high fidelity over a large FOV. A comparison of PPG3D with a shift-variant PSF generator for 3D LM reveals a threefold improvement in accuracy. Moreover, PPG3D is approximately 100 times faster than existing PSF generators, when used in image plane-based interpolation mode. Given its user-friendliness, we believe that PPG3D holds great potential for widespread application in SMLM and other imaging modalities.
引用
收藏
页数:9
相关论文
共 43 条
[1]   ZOLA-3D allows flexible 3D localization microscopy over an adjustable axial range [J].
Aristov, Andrey ;
Lelandais, Benoit ;
Rensen, Elena ;
Zimmer, Christophe .
NATURE COMMUNICATIONS, 2018, 9
[2]   Analyzing Single Molecule Localization Microscopy Data Using Cubic Splines [J].
Babcock, Hazen P. ;
Zhuang, Xiaowei .
SCIENTIFIC REPORTS, 2017, 7
[3]   Imaging intracellular fluorescent proteins at nanometer resolution [J].
Betzig, Eric ;
Patterson, George H. ;
Sougrat, Rachid ;
Lindwasser, O. Wolf ;
Olenych, Scott ;
Bonifacino, Juan S. ;
Davidson, Michael W. ;
Lippincott-Schwartz, Jennifer ;
Hess, Harald F. .
SCIENCE, 2006, 313 (5793) :1642-1645
[4]   Accurate localization microscopy by intrinsic aberration calibration [J].
Copeland, Craig R. ;
McGray, Craig D. ;
Ilic, B. Robert ;
Geist, Jon ;
Stavis, Samuel M. .
NATURE COMMUNICATIONS, 2021, 12 (01)
[5]   Subnanometer localization accuracy in widefield optical microscopy [J].
Copeland, Craig R. ;
Geist, Jon ;
McGray, Craig D. ;
Aksyuk, Vladimir A. ;
Liddle, J. Alexander ;
Ilic, B. Robert ;
Stavis, Samuel M. .
LIGHT-SCIENCE & APPLICATIONS, 2018, 7
[6]   Nanoscale three-dimensional single particle tracking [J].
Dupont, Aurelie ;
Lamb, Don C. .
NANOSCALE, 2011, 3 (11) :4532-4541
[7]   Diffractive optical system design by cascaded propagation [J].
Ferdman, Boris ;
Saguy, Alon ;
Xiao, Dafei ;
Shechtman, Yoav .
OPTICS EXPRESS, 2022, 30 (15) :27509-27530
[8]   VIPR: vectorial implementation of phase retrieval for fast and accurate microscopic pixel-wise pupil estimation [J].
Ferdman, Boris ;
Nehme, Elias ;
Weiss, Lucien E. ;
Orange, Reut ;
Alalouf, Onit ;
Shechtman, Yoav .
OPTICS EXPRESS, 2020, 28 (07) :10179-10198
[9]   Field-dependent deep learning enables high-throughput whole-cell 3D super-resolution imaging [J].
Fu, Shuang ;
Shi, Wei ;
Luo, Tingdan ;
He, Yingchuan ;
Zhou, Lulu ;
Yang, Jie ;
Yang, Zhichao ;
Liu, Jiadong ;
Liu, Xiaotian ;
Guo, Zhiyong ;
Yang, Chengyu ;
Liu, Chao ;
Huang, Zhen-li ;
Ries, Jonas ;
Zhang, Mingjie ;
Xi, Peng ;
Jin, Dayong ;
Li, Yiming .
NATURE METHODS, 2023, 20 (03) :459-+
[10]  
GIBSON SF, 1992, J OPT SOC AM A, V9, P154