ON ISOMORPHIC EMBEDDINGS IN THE CLASS OF DISJOINTLY HOMOGENEOUS REARRANGEMENT INVARIANT SPACES

被引:0
作者
Astashkin, S. V. [1 ,2 ,3 ,4 ]
机构
[1] Samara Natl Res Univ, Samara, Russia
[2] Moscow MV Lomonosov State Univ, Moscow, Russia
[3] Moscow Ctr Fundamental & Appl Math, Moscow, Russia
[4] Bahcesehir Univ, Istanbul, Turkiye
基金
俄罗斯科学基金会;
关键词
isomorphism; rearrangement invariant space; Orlicz space; Lorentz space; disjoint functions; disjointly homogeneous space; p-disjointly homogeneous space; BANACH-LATTICES; SUBSPACES; DUALITY;
D O I
10.1134/S0037446624030017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The equivalence of the Haar system in a rearrangement invariant space X on [0, 1] and a sequence of pairwise disjoint functions in some Lorentz space is known to imply that X = L-2[0, 1] up to the equivalence of norms. We show that the same holds for the class of uniform disjointly homogeneous rearrangement invariant spaces and obtain a few consequences for the properties of isomorphic embeddings of such spaces. In particular, the L-p[0, 1] space with 1 < p < infinity is the only uniform p-disjointly homogeneous rearrangement invariant space on [0, 1] with nontrivial Boyd indices which has two rearrangement invariant representations on the half-axis (0, infinity).
引用
收藏
页码:505 / 513
页数:9
相关论文
共 23 条
[11]   Disjointly homogeneous Banach lattices and compact products of operators [J].
Flores, Julio ;
Tradacete, Pedro ;
Troitsky, Vladimir G. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 354 (02) :657-663
[12]   Subspaces generated by translations in rearrangement invariant spaces [J].
Hernandez, FL ;
Semenov, EM .
JOURNAL OF FUNCTIONAL ANALYSIS, 1999, 169 (01) :52-80
[13]   SUMS OF INDEPENDENT RANDOM-VARIABLES IN REARRANGEMENT-INVARIANT FUNCTION-SPACES [J].
JOHNSON, WB ;
SCHECHTMAN, G .
ANNALS OF PROBABILITY, 1989, 17 (02) :789-808
[14]  
Johnson WB., 1979, Symmetric Structures in Banach Spaces, DOI [10.1090/memo/0217, DOI 10.1090/MEMO/0217]
[15]  
Kalton NJ., 1993, Lattice Structures on Banach Spaces, DOI [10.1090/memo/0493, DOI 10.1090/MEMO/0493]
[16]  
Kashin B. S., 1999, ORTHOGONAL SERIES
[17]  
KREIN SG, 1982, INTERPOLATION LINEAR
[18]   ORLICZ SEQUENCE SPACES .3. [J].
LINDENSTRAUSS, J ;
TZAFRIRI, L .
ISRAEL JOURNAL OF MATHEMATICS, 1973, 14 (04) :368-389
[19]  
LINDENSTRAUSS J, 1977, CLASSICAL BANACH SPA
[20]  
Lindenstrauss J., 1979, Classical Banach Spaces, I, DOI [10.1007/978-3-662-35347-9, DOI 10.1007/978-3-662-35347-9]