ON ISOMORPHIC EMBEDDINGS IN THE CLASS OF DISJOINTLY HOMOGENEOUS REARRANGEMENT INVARIANT SPACES

被引:0
作者
Astashkin, S. V. [1 ,2 ,3 ,4 ]
机构
[1] Samara Natl Res Univ, Samara, Russia
[2] Moscow MV Lomonosov State Univ, Moscow, Russia
[3] Moscow Ctr Fundamental & Appl Math, Moscow, Russia
[4] Bahcesehir Univ, Istanbul, Turkiye
基金
俄罗斯科学基金会;
关键词
isomorphism; rearrangement invariant space; Orlicz space; Lorentz space; disjoint functions; disjointly homogeneous space; p-disjointly homogeneous space; BANACH-LATTICES; SUBSPACES; DUALITY;
D O I
10.1134/S0037446624030017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The equivalence of the Haar system in a rearrangement invariant space X on [0, 1] and a sequence of pairwise disjoint functions in some Lorentz space is known to imply that X = L-2[0, 1] up to the equivalence of norms. We show that the same holds for the class of uniform disjointly homogeneous rearrangement invariant spaces and obtain a few consequences for the properties of isomorphic embeddings of such spaces. In particular, the L-p[0, 1] space with 1 < p < infinity is the only uniform p-disjointly homogeneous rearrangement invariant space on [0, 1] with nontrivial Boyd indices which has two rearrangement invariant representations on the half-axis (0, infinity).
引用
收藏
页码:505 / 513
页数:9
相关论文
共 23 条
[1]   Independent functions and the geometry of Banach spaces [J].
Astashkin, S. V. ;
Sukochev, F. A. .
RUSSIAN MATHEMATICAL SURVEYS, 2010, 65 (06) :1003-1081
[2]   Disjointly homogeneous Orlicz spaces revisited [J].
Astashkin, Sergey V. .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2021, 200 (06) :2689-2713
[3]   Some remarks about disjointly homogeneous symmetric spaces [J].
Astashkin, Sergey V. .
REVISTA MATEMATICA COMPLUTENSE, 2019, 32 (03) :823-835
[4]   Duality problem for disjointly homogeneous rearrangement invariant spaces [J].
Astashkin, Sergey V. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2019, 276 (10) :3205-3225
[5]   REARRANGEMENT-INVARIANT SUBSPACES OF LORENTZ FUNCTION-SPACES [J].
CAROTHERS, NL .
ISRAEL JOURNAL OF MATHEMATICS, 1981, 40 (3-4) :217-228
[6]   REARRANGEMENT-INVARIANT SUBSPACES OF LORENTZ FUNCTION-SPACES .2. [J].
CAROTHERS, NL .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1987, 17 (03) :607-616
[7]   BANACH-LATTICES AND SPACES HAVING LOCAL UNCONDITIONAL STRUCTURE, WITH APPLICATIONS TO LORENTZ FUNCTION SPACES [J].
FIGIEL, T ;
JOHNSON, WB ;
TZAFRIRI, L .
JOURNAL OF APPROXIMATION THEORY, 1975, 13 (04) :395-412
[8]   Disjointly homogeneous Banach lattices: Duality and complementation [J].
Flores, J. ;
Hernandez, F. L. ;
Spinu, E. ;
Tradacete, P. ;
Troitsky, V. G. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 266 (09) :5858-5885
[9]  
Flores J, 2016, TRENDS MATH, P179
[10]   STRICTLY SINGULAR AND POWER-COMPACT OPERATORS ON BANACH LATTICES [J].
Flores, Julio ;
Hernandez, Francisco L. ;
Semenov, Evgueni M. ;
Tradacete, Pedro .
ISRAEL JOURNAL OF MATHEMATICS, 2012, 188 (01) :323-352