PROPAGATION OF SINGULARITIES FOR GRAVITY-CAPILLARY WATER WAVES

被引:3
作者
Zhu, Hui [1 ,2 ]
机构
[1] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
[2] Univ Paris Saclay, Univ Paris Sud, Lab Math Orsay, CNRS, Orsay, France
关键词
water wave; smoothing effect; propagation of singularity; wavefront set; CAUCHY-PROBLEM; GLOBAL-SOLUTIONS; LOCAL EXISTENCE; SOBOLEV SPACES; WELL-POSEDNESS; SCHRODINGER; REGULARITY; EQUATIONS; SYSTEM; INEQUALITY;
D O I
10.2140/apde.2024.17.281
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We obtain two results of propagation for the gravity-capillary water wave system. The first result shows the propagation of oscillations and the spatial decay at infinity; the second result shows a microlocal smoothing effect under the nontrapping condition of the initial free surface. These results extend the works of Craig, Kappeler and Strauss (1995), Wunsch (1999) and Nakamura (2005) to quasilinear dispersive equations. These propagation results are stated for water waves with asymptotically flat free surfaces, of which we also obtain the existence. To prove these results, we generalize the paradifferential calculus of Bony (1979) to weighted Sobolev spaces and develop a semiclassical paradifferential calculus. We also introduce the quasihomogeneous wave front sets which characterize, in a general manner, the oscillations and the spatial growth/decay of distributions
引用
收藏
页码:281 / 344
页数:67
相关论文
共 67 条
[1]   Cauchy theory for the gravity water waves system with non-localized initial data [J].
Alazard, T. ;
Burq, N. ;
Zuily, C. .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2016, 33 (02) :337-395
[2]   On the Cauchy problem for gravity water waves [J].
Alazard, T. ;
Burq, N. ;
Zuily, C. .
INVENTIONES MATHEMATICAE, 2014, 198 (01) :71-163
[3]   ON THE WATER-WAVE EQUATIONS WITH SURFACE TENSION [J].
Alazard, T. ;
Burq, N. ;
Zuily, C. .
DUKE MATHEMATICAL JOURNAL, 2011, 158 (03) :413-499
[4]   A Morawetz inequality for water waves [J].
Alazard, Thomas ;
Ifrim, Mihaela ;
Tataru, Daniel .
AMERICAN JOURNAL OF MATHEMATICS, 2022, 144 (03) :607-699
[5]  
Alazard T, 2015, ANN SCI ECOLE NORM S, V48, P1149
[6]   Paralinearization of the Dirichlet to Neumann Operator, and Regularity of Three-Dimensional Water Waves [J].
Alazard, Thomas ;
Metivier, Guy .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2009, 34 (12) :1632-1704
[7]  
[Anonymous], 1968, J. App. Mech. Techn. Phys., DOI DOI 10.1007/BF00913182
[8]  
[Anonymous], 1998, Amer. Math. Soc. Transl.
[9]  
Bahouri H, 2011, GRUNDLEHR MATH WISS, V343, P1, DOI 10.1007/978-3-642-16830-7
[10]  
Beyer K, 1998, MATH METHOD APPL SCI, V21, P1149, DOI 10.1002/(SICI)1099-1476(199808)21:12<1149::AID-MMA990>3.0.CO