A robust and low-cost biomass carbon fiber@SiO2 interlayer for reliable lithium-sulfur batteries

被引:59
作者
Liu, Tao [1 ,2 ]
Sun, Xiaolin [1 ]
Sun, Shimei [1 ]
Niu, Quanhai [1 ]
Liu, Hui [1 ]
Song, Wei [3 ]
Cao, Fengting [1 ]
Li, Xichao [1 ]
Ohsaka, Takeo [4 ]
Wu, Jianfei [1 ]
机构
[1] Chinese Acad Sci, Qingdao Inst Bioenergy & Bioproc Technol, Qingdao 266101, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Sun Yat Sen Univ, Sch Chem, Guangzhou 510275, Guangdong, Peoples R China
[4] Kanagawa Univ, Res Inst Engn, Kanagawa Ku, Yokohama, Kanagawa 2218686, Japan
基金
中国博士后科学基金; 美国国家科学基金会; 中国国家自然科学基金;
关键词
Lithium-sulfur batteries; Biomass carbon fiber; SiO2; Polysulfide-anchoring; Interlayer; GRAPHENE OXIDE; ELECTROCHEMICAL PERFORMANCE; LONG-LIFE; SEPARATOR; CATHODE; ELECTROLYTES; IMMOBILIZER; PEEL;
D O I
10.1016/j.electacta.2018.10.168
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Lithium-sulfur batteries were investigated as promising next-generation energy storage devices owing to their high capacity in comparison to conventional lithium-ion batteries. Nevertheless, the serious shuttle effect and sluggish redox kinetics originated from dissolution of polysulfides and insulating property of sulfur and lithium sulfide, restricted their practical applications. To overcome these stubborn problems, a robust and environment-friendly biomass carbon fiber interlayer anchored with uniformly-distributed SiO2 nanoparticles was demonstrated. Benefiting from the excellent conductivity of carbon fiber, together with the stable chemical adsorption of SiO2 for soluble polysulfides, this low-cost and lightweight interlayer could not only remarkably enhance sulfur utilization, but also efficiently capture the polysulfides by chemical entrapment strategies. With this biomass carbon fiber@SiO2 interlayer, the batteries delivered a high reversible capacity of 1352.8 mAh g(-1) at 0.1 C and enhanced capacity of 618.4 mAh g(-1) after 500 cycles at 1.0 C. Even up to 4.2 mg cm(-2) sulfur loading, high cycling stability was also achieved by this interlayer. We believe this robust and low-cost interlayer has a great potential for practical applications of Li-S batteries. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:684 / 692
页数:9
相关论文
共 50 条
  • [1] Reliable Interlayer Based on Hybrid Nanocomposites and Carbon Nanotubes for Lithium-Sulfur Batteries
    Liu, Tao
    Sun, Shimei
    Hao, Jialiang
    Song, Wei
    Niu, Quanhai
    Sun, Xiaolin
    Wu, Yue
    Song, Depeng
    Wu, Jianfei
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (17) : 15607 - 15615
  • [2] Low-cost, porous carbon current collector with high sulfur loading for lithium-sulfur batteries
    Chung, Sheng-Heng
    Manthiram, Arumugam
    ELECTROCHEMISTRY COMMUNICATIONS, 2014, 38 : 91 - 95
  • [3] High rate and stable cycling of lithium-sulfur batteries with carbon fiber cloth interlayer
    Yang, Yuxiang
    Sun, Wang
    Zhang, Jing
    Yue, Xinyang
    Wang, Zhenhua
    Sun, Kening
    ELECTROCHIMICA ACTA, 2016, 209 : 691 - 699
  • [4] TiO2embedded hydrothermally synthesized carbon composite as interlayer for lithium-sulfur batteries
    Cengiz, Elif Ceylan
    Demir-Cakan, Rezan
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2020, 24 (10) : 2469 - 2478
  • [5] Lightweight freestanding hollow carbon fiber interlayer for high-performance lithium-sulfur batteries
    Meng, Qinglong
    Yang, Rong
    Liu, Ying
    Li, Mingxu
    Chen, Shaozheng
    Yan, Yinglin
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2022, 46 (04) : 5296 - 5305
  • [6] Electrochemical active interlayer with porous architecture for reliable lithium-sulfur batteries
    Zhou, Hang-Yu
    Cao, Xuan
    Qiao, Zi-Rui
    Gao, Shang
    Zhou, Pan
    Yan, Shuai-Shuai
    Zhang, Qing
    Li, Cheng-Hui
    Hou, Wen -Hui
    Lu, Yang
    Liu, Kai
    Kang, Rong-Xue
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2024, 966
  • [7] Waste cotton cloth derived carbon microtube textile: a robust and scalable interlayer for lithium-sulfur batteries
    Zheng, Bangbei
    Li, Narui
    Yang, Jiaye
    Xi, Jingyu
    CHEMICAL COMMUNICATIONS, 2019, 55 (16) : 2289 - 2292
  • [8] Enhanced performance of lithium-sulfur batteries with an ultrathin and lightweight MoS2/carbon nanotube interlayer
    Yan, Lingjia
    Luo, Nannan
    Kong, Weibang
    Luo, Shu
    Wu, Hengcai
    Jiang, Kaili
    Li, Qunqing
    Fan, Shoushan
    Duan, Wenhui
    Wang, Jiaping
    JOURNAL OF POWER SOURCES, 2018, 389 : 169 - 177
  • [9] Honeycomb-like nitrogen and sulfur dual-doped hierarchical porous biomass carbon bifunctional interlayer for advanced lithium-sulfur batteries
    Jiang, Shouxin
    Chen, Manfang
    Wang, Xianyou
    Zhang, Yan
    Huang, Cheng
    Zhang, Yapeng
    Wang, Ying
    CHEMICAL ENGINEERING JOURNAL, 2019, 355 : 478 - 486
  • [10] Geometric design of carbon-based interlayer for advanced lithium-sulfur batteries
    Gao, Lintong
    Wang, Xianyou
    Cao, Qi
    Jing, Bo
    JOURNAL OF ENERGY STORAGE, 2024, 96