CHAOS THEORY, ADVANCED METAHEURISTIC ALGORITHMS AND THEIR NEWFANGLED DEEP LEARNING ARCHITECTURE OPTIMIZATION APPLICATIONS: A REVIEW

被引:1
作者
Akgul, Akif [1 ]
Karaca, Yell'z [2 ]
Pala, Muhammed Ali [3 ]
Cimen, Murat Erhan [3 ]
Boz, Ali Fuat [3 ]
Yildiz, Mustafa Zahid [3 ]
机构
[1] Hitit Univ, Fac Engn, Dept Comp Engn, Corum, Turkiye
[2] Univ Massachusetts, Chan Med Sch, Worcester, MA 01655 USA
[3] Sakarya Univ Appl Sci, Fac Technol, Dept Elect & Elect Engn, Sakarya, Turkiye
关键词
Metaheuristic Algorithms; Chaos-based Metaheuristic Algorithms; Evolution-based Metaheuristic Algorithms; Swarm-based Metaheuristic Algorithms; Nature-based Metaheuristic Algorithms; Human-based Metaheuristic Algorithms; Hybrid Metaheuristic Algorithms; Architecture Optimization; Deep Learning; Engineering Applications; Natural Mathematics; Engineering Mathematics; Applicability-based optimization; Chaos Theory; CONVOLUTIONAL NEURAL-NETWORKS; PARTICLE SWARM OPTIMIZATION; DIFFERENTIAL EVOLUTION; FIREFLY ALGORITHMS; BAT ALGORITHM; DESIGN; RECURRENT; COLONY;
D O I
10.1142/S0218348X24300010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Metaheuristic techniques are capable of representing optimization frames with their specific theories as well as objective functions owing to their being adjustable and effective in various applications. Through the optimization of deep learning models, metaheuristic algorithms inspired by nature, imitating the behavior of living and non-living beings, have been used for about four decades to solve challenging, complex, and chaotic problems. These algorithms can be categorized as evolution-based, swarm-based, nature-based, human-based, hybrid, or chaos-based. Chaos theory, as a useful approach to understanding neural network optimization, has the basic idea of viewing the neural network optimization as a dynamical system in which the equation schemes are utilized from the space pertaining to learnable parameters, namely optimization trajectory, to itself, which enables the description of the evolution of the system by understanding the training behavior, which is to say the number of iterations over time. The examination of the recent studies reveals the importance of chaos theory, which is sensitive to initial conditions with randomness and dynamical properties that are principally emerging on the complex multimodal landscape. Chaotic optimization, in this regard, accelerates the speed of the algorithm while also enhancing the variety of movement patterns. The significance of hybrid algorithms developed through their applications in different domains concerning real-world phenomena and well-known benchmark problems in the literature is also evident. Metaheuristic optimization algorithms have also been applied to deep learning or deep neural networks (DNNs), a branch of machine learning. In this respect, the basic features of deep learning and DNNs and the extensive use of metaheuristic algorithms are overviewed and explained. Accordingly, the current review aims at providing new insights into the studies that deal with metaheuristic algorithms, hybrid-based metaheuristics, chaos-based metaheuristics as well as deep learning besides presenting recent information on the development of the essence of this branch of science with emerging opportunities, applicability-based optimization aspects and generation of well-informed decisions.
引用
收藏
页数:27
相关论文
共 50 条
  • [41] A systematic review of the emerging metaheuristic algorithms on solving complex optimization problems
    Turgut, Oguz Emrah
    Turgut, Mert Sinan
    Kirtepe, Erhan
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (19) : 14275 - 14378
  • [42] Usages of metaheuristic algorithms in investigating civil infrastructure optimization models; a review
    Saeedeh Ghaemifard
    Amin Ghannadiasl
    AI in Civil Engineering, 2024, 3 (1):
  • [43] Simulation optimization: a review of algorithms and applications
    Amaran, Satyajith
    Sahinidis, Nikolaos V.
    Sharda, Bikram
    Bury, Scott J.
    4OR-A QUARTERLY JOURNAL OF OPERATIONS RESEARCH, 2014, 12 (04): : 301 - 333
  • [44] A systematic review on deep learning architectures and applications
    Khamparia, Aditya
    Singh, Karan Mehtab
    EXPERT SYSTEMS, 2019, 36 (03)
  • [45] Arrhythmia Detection by Using Chaos Theory with Machine Learning Algorithms
    Aboghazalah, Maie
    El-kafrawy, Passent
    Ahmed, Abdelmoty M.
    Elnemr, Rasha
    Bouallegue, Belgacem
    El-sayed, Ayman
    CMC-COMPUTERS MATERIALS & CONTINUA, 2024, 79 (03): : 3855 - 3875
  • [46] Simulation optimization: a review of algorithms and applications
    Amaran, Satyajith
    Sahinidis, Nikolaos V.
    Sharda, Bikram
    Bury, Scott J.
    ANNALS OF OPERATIONS RESEARCH, 2016, 240 (01) : 351 - 380
  • [47] Modeling Metaheuristic Optimization with Deep Learning Software Bug Prediction Model
    Sangeetha, M.
    Malathi, S.
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2022, 34 (03) : 1587 - 1601
  • [48] MetaGen: A framework for metaheuristic development and hyperparameter optimization in machine and deep learning
    Gutierrez-aviles, David
    Jimenez-navarro, Manuel Jesus
    Torres, Jose Francisco
    Martinez-Alvarez, Francisco
    NEUROCOMPUTING, 2025, 637
  • [49] A Survey on Deep Learning: Algorithms, Techniques, and Applications
    Pouyanfar, Samira
    Sadiq, Saad
    Yan, Yilin
    Tian, Haiman
    Tao, Yudong
    Reyes, Maria Presa
    Shyu, Mei-Ling
    Chen, Shu-Ching
    Iyengar, S. S.
    ACM COMPUTING SURVEYS, 2019, 51 (05)
  • [50] Deep Learning Algorithms and Their Applications in the Perception Problem
    Lhiadi, Redouane
    3RD INTERNATIONAL CONFERENCE ON NETWORKING, INFORMATION SYSTEM & SECURITY (NISS'20), 2020,