Convergence of inertial prox-penalization and inertial forward-backward algorithms for solving monotone bilevel equilibrium problems

被引:1
作者
Balhag, A. [1 ]
Mazgouri, Z. [2 ]
Thera, M. [3 ]
机构
[1] Univ Bourgogne Franche Comte, Inst Math Bourgogne, UMR 5584 CNRS, Dijon, France
[2] Sidi Mohamed Ben Abdellah Univ, Natl Sch Appl Sci, Appl Math Engn Dept, LAMA Lab, Fes, Morocco
[3] Univ Limoges, XLIM UMR CNRS 7252, Limoges, France
关键词
Bilevel equilibrium problems; monotone bifunctions; proximal algorithm; weak and strong convergence; equilibrium Fitzpatrick transform; SPLITTING ALGORITHMS; MAXIMAL MONOTONICITY; WEAK; BIFUNCTIONS;
D O I
10.1080/02331934.2024.2341934
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
The main focus of this paper is on bilevel optimization on Hilbert spaces involving two monotone equilibrium bifunctions. We present a new achievement consisting on the introduction of inertial methods for solving these types of problems. Indeed, two several inertial type methods are suggested: a proximal algorithm and a forward-backward one. Under suitable conditions and without any restrictive assumption on the trajectories, the weak and strong convergence of the sequence generated by the both iterative methods are established. Two particular cases illustrating the proposed methods are thereafter discussed with respect to hierarchical minimization problems and equilibrium problems under a saddle point constraint. Furthermore, numerical examples are given to demonstrate the implementability of our algorithms. The algorithms and their convergence results improve and develop previous results in the field.
引用
收藏
页数:45
相关论文
共 39 条
[1]   On the Fitzpatrick transform of a monotone bifunction [J].
Alizadeh, M. H. ;
Hadjisavvas, N. .
OPTIMIZATION, 2013, 62 (06) :693-701
[2]   An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping [J].
Alvarez, F ;
Attouch, H .
SET-VALUED ANALYSIS, 2001, 9 (1-2) :3-11
[3]  
[Anonymous], 1976, CONVEX ANAL VARIATIO
[4]  
[Anonymous], 1996, Serdica Math J
[5]  
Antipin AS., 1995, Zh Vychisl Mat i Mat Fiz, V35, P688
[6]   PROX-PENALIZATION AND SPLITTING METHODS FOR CONSTRAINED VARIATIONAL PROBLEMS [J].
Attouch, Hedy ;
Czarnecki, Marc-Olivier ;
Peypouquet, Juan .
SIAM JOURNAL ON OPTIMIZATION, 2011, 21 (01) :149-173
[7]  
Bauschke HH, 2011, CMS BOOKS MATH, P1, DOI 10.1007/978-1-4419-9467-7
[8]   GENERALIZED PROXIMAL DISTANCES FOR BILEVEL EQUILIBRIUM PROBLEMS [J].
Bento, G. C. ;
Cruz Neto, J. X. ;
Lopes, J. O. ;
Soares, P. A., Jr. ;
Soubeyran, A. .
SIAM JOURNAL ON OPTIMIZATION, 2016, 26 (01) :810-830
[9]  
Blum E., 1994, MATH STUDENT, V63, P123
[10]   An Inertial Proximal-Gradient Penalization Scheme for Constrained Convex Optimization Problems [J].
Boţ R.I. ;
Csetnek E.R. ;
Nimana N. .
Vietnam Journal of Mathematics, 2018, 46 (1) :53-71