Quark production and thermalization of the quark-gluon plasma

被引:2
作者
Cabodevila, Sergio Barrera [1 ]
Salgado, Carlos A. [1 ,2 ]
Wu, Bin [1 ]
机构
[1] Univ Santiago de Compostela, Inst Galego Fis Altas Enerxias IGFAE, E-15782 Galicia, Spain
[2] Xunta Galicia, Axencia Galega Innovac GAIN, Galicia, Spain
基金
欧洲研究理事会;
关键词
Finite Temperature or Finite Density; Quark-Gluon Plasma; RADIATIVE ENERGY-LOSS; EQUATION;
D O I
10.1007/JHEP06(2024)145
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We first assemble a full set of the Boltzmann Equation in Diffusion Approximation (BEDA) for studying thermalization/hydrodynamization as well as the production of massless quarks and antiquarks in out of equilibrium systems. In the BEDA, the time evolution of a generic system is characterized by the following space-time dependent quantities: the jet quenching parameter, the effective temperature, and two more for each quark flavor that describe the conversion between gluons and quarks/antiquarks via the 2 <-> 2 processes. Out of the latter two quantities, an effective net quark chemical potential is defined, which equals the net quark chemical potential after thermal equilibration. We then study thermalization and the production of three flavors of massless quarks and antiquarks in spatially homogeneous systems initially filled only with gluons. A parametric understanding of thermalization and quark production is obtained for either initially very dense or dilute systems, which are complemented by detailed numerical simulations for intermediate values of initial gluon occupancy f 0. For a wide range of f 0, the final equilibration time is determined to be about one order of magnitude longer than that in the corresponding pure gluon systems. Moreover, during the final stage of the thermalization process for f 0 >= 10-4, gluons are found to thermalize earlier than quarks and antiquarks, undergoing the top-down thermalization.
引用
收藏
页数:39
相关论文
共 62 条
[11]   Holographic thermalization [J].
Balasubramanian, V. ;
Bernamonti, A. ;
de Boer, J. ;
Copland, N. ;
Craps, B. ;
Keski-Vakkuri, E. ;
Mueller, B. ;
Schaefer, A. ;
Shigemori, M. ;
Staessens, W. .
PHYSICAL REVIEW D, 2011, 84 (02)
[12]   Thermalization of Strongly Coupled Field Theories [J].
Balasubramanian, V. ;
Bernamonti, A. ;
de Boer, J. ;
Copland, N. ;
Craps, B. ;
Keski-Vakkuri, E. ;
Mueller, B. ;
Schaefer, A. ;
Shigemori, M. ;
Staessens, W. .
PHYSICAL REVIEW LETTERS, 2011, 106 (19)
[13]  
Bellac M. L, 2011, Cambridge Monographs on Mathematical Physics
[14]   Basin of attraction for turbulent thermalization and the range of validity of classical-statistical simulations [J].
Berges, J. ;
Boguslavski, K. ;
Schlichting, S. ;
Venugopalan, R. .
JOURNAL OF HIGH ENERGY PHYSICS, 2014, (05)
[15]   Turbulent thermalization process in heavy-ion collisions at ultrarelativistic energies [J].
Berges, J. ;
Boguslavski, K. ;
Schlichting, S. ;
Venugopalan, R. .
PHYSICAL REVIEW D, 2014, 89 (07)
[16]   QCD thermalization: Ab initio approaches and interdisciplinary connections [J].
Berges, Juergen ;
Heller, Michal P. ;
Mazeliauskas, Aleksas ;
Venugopalan, Raju .
REVIEWS OF MODERN PHYSICS, 2021, 93 (03)
[17]   Overpopulated gauge fields on the lattice [J].
Berges, Juergen ;
Schlichting, Soeren ;
Sexty, Denes .
PHYSICAL REVIEW D, 2012, 86 (07)
[18]   Holographic second laws of black hole thermodynamics [J].
Bernamonti, Alice ;
Galli, Federico ;
Myers, Robert C. ;
Oppenheim, Jonathan .
JOURNAL OF HIGH ENERGY PHYSICS, 2018, (07)
[19]   Medium-Induced QCD Cascade: Democratic Branching and Wave Turbulence [J].
Blaizot, J. -P. ;
Iancu, E. ;
Mehtar-Tani, Y. .
PHYSICAL REVIEW LETTERS, 2013, 111 (05)
[20]   The thermalization of soft modes in non-expanding isotropic quark gluon plasmas [J].
Blaizot, Jean-Paul ;
Liao, Jinfeng ;
Mehtar-Tani, Yacine .
NUCLEAR PHYSICS A, 2017, 961 :37-67