Computing Transiting Exoplanet Parameters with 1D Convolutional Neural Networks

被引:1
作者
Iglesias Alvarez, Santiago [1 ]
Diez Alonso, Enrique [1 ,2 ]
Sanchez Rodriguez, Maria Luisa [1 ,3 ]
Rodriguez Rodriguez, Javier [1 ]
Perez Fernandez, Saul [1 ]
de Cos Juez, Francisco Javier [1 ,4 ]
机构
[1] Inst Univ Ciencias & Tecnol Espaciales Asturias IC, C Independencia 13, Oviedo 33004, Spain
[2] Univ Oviedo, Fac Ciencias, Dept Matemat, Oviedo 33007, Spain
[3] Univ Oviedo, Dept Fis, Oviedo 33007, Spain
[4] Univ Oviedo, Dept Explotac & Prospecc Min, Oviedo 33004, Spain
关键词
astrophysics; transits; exoplanets; neural networks; convolutional neural networks; artificial intelligence; simulations; 85-10; PLANET SEARCH; MASS; DETECTABILITY; ALGORITHM;
D O I
10.3390/axioms13020083
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The transit method allows the detection and characterization of planetary systems by analyzing stellar light curves. Convolutional neural networks appear to offer a viable solution for automating these analyses. In this research, two 1D convolutional neural network models, which work with simulated light curves in which transit-like signals were injected, are presented. One model operates on complete light curves and estimates the orbital period, and the other one operates on phase-folded light curves and estimates the semimajor axis of the orbit and the square of the planet-to-star radius ratio. Both models were tested on real data from TESS light curves with confirmed planets to ensure that they are able to work with real data. The results obtained show that 1D CNNs are able to characterize transiting exoplanets from their host star's detrended light curve and, furthermore, reducing both the required time and computational costs compared with the current detection and characterization algorithms.
引用
收藏
页数:21
相关论文
共 43 条
[1]  
Agarap AF, 2018, arXiv, DOI [10.48550/arXiv.1803.08375, DOI 10.48550/ARXIV.1803.08375]
[2]   Scientific Domain Knowledge Improves Exoplanet Transit Classification with Deep Learning [J].
Ansdell, Megan ;
Ioannou, Yani ;
Osborn, Hugh P. ;
Sasdelli, Michele ;
Smith, Jeffrey C. ;
Caldwell, Douglas ;
Jenkins, Jon M. ;
Raissi, Chedy ;
Angerhausen, Daniel .
ASTROPHYSICAL JOURNAL LETTERS, 2018, 869 (01)
[3]   Kepler Planet-Detection Mission: Introduction and First Results [J].
Borucki, William J. ;
Koch, David ;
Basri, Gibor ;
Batalha, Natalie ;
Brown, Timothy ;
Caldwell, Douglas ;
Caldwell, John ;
Christensen-Dalsgaard, Jorgen ;
Cochran, William D. ;
DeVore, Edna ;
Dunham, Edward W. ;
Dupree, Andrea K. ;
Gautier, Thomas N., III ;
Geary, John C. ;
Gilliland, Ronald ;
Gould, Alan ;
Howell, Steve B. ;
Jenkins, Jon M. ;
Kondo, Yoji ;
Latham, David W. ;
Marcy, Geoffrey W. ;
Meibom, Soren ;
Kjeldsen, Hans ;
Lissauer, Jack J. ;
Monet, David G. ;
Morrison, David ;
Sasselov, Dimitar ;
Tarter, Jill ;
Boss, Alan ;
Brownlee, Don ;
Owen, Toby ;
Buzasi, Derek ;
Charbonneau, David ;
Doyle, Laurance ;
Fortney, Jonathan ;
Ford, Eric B. ;
Holman, Matthew J. ;
Seager, Sara ;
Steffen, Jason H. ;
Welsh, William F. ;
Rowe, Jason ;
Anderson, Howard ;
Buchhave, Lars ;
Ciardi, David ;
Walkowicz, Lucianne ;
Sherry, William ;
Horch, Elliott ;
Isaacson, Howard ;
Everett, Mark E. ;
Fischer, Debra .
SCIENCE, 2010, 327 (5968) :977-980
[4]   Detection of planetary transits across a sun-like star [J].
Charbonneau, D ;
Brown, TM ;
Latham, DW ;
Mayor, M .
ASTROPHYSICAL JOURNAL, 2000, 529 (01) :L45-L48
[5]   Classifying exoplanet candidates with convolutional neural networks: application to the Next Generation Transit Survey [J].
Chaushev, Alexander ;
Raynard, Liam ;
Goad, Michael R. ;
Eigmueller, Philipp ;
Armstrong, David J. ;
Briegal, Joshua T. ;
Burleigh, Matthew R. ;
Casewell, Sarah L. ;
Gi, Samuel ;
Jenkins, James S. ;
Nielsen, Louise D. ;
Watson, Christopher A. ;
West, Richard G. ;
Wheatley, Peter J. ;
Udry, Stephane ;
Vines, Jose, I .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2019, 488 (04) :5232-5250
[6]  
Chollet Francois, 2015, Keras
[7]  
Claret A, 2000, ASTRON ASTROPHYS, V363, P1081
[8]   PLANETARY CANDIDATES OBSERVED BY KEPLER. VII. THE FIRST FULLY UNIFORM CATALOG BASED ON THE ENTIRE 48-MONTH DATA SET (Q1-Q17 DR24) [J].
Coughlin, Jeffrey L. ;
Mullally, F. ;
Thompson, Susan E. ;
Rowe, Jason F. ;
Burke, Christopher J. ;
Latham, David W. ;
Batalha, Natalie M. ;
Ofir, Aviv ;
Quarles, Billy L. ;
Henze, Christopher E. ;
Wolfgang, Angie ;
Caldwell, Douglas A. ;
Bryson, Stephen T. ;
Shporer, Avi ;
Catanzarite, Joseph ;
Akeson, Rachel ;
Barclay, Thomas ;
Borucki, William J. ;
Boyajian, Tabetha S. ;
Campbell, Jennifer R. ;
Christiansen, Jessie L. ;
Girouard, Forrest R. ;
Haas, Michael R. ;
Howell, Steve B. ;
Huber, Daniel ;
Jenkins, Jon M. ;
Li, Jie ;
Patil-Sabale, Anima ;
Quintana, Elisa V. ;
Ramirez, Solange ;
Seader, Shawn ;
Smith, Jeffrey C. ;
Tenenbaum, Peter ;
Twicken, Joseph D. ;
Zamudio, Khadeejah A. .
ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2016, 224 (01)
[9]   Deep learning exoplanets detection by combining real and synthetic data [J].
Cuellar, Sara ;
Granados, Paulo ;
Fabregas, Ernesto ;
Cure, Michel ;
Vargas, Hector ;
Dormido-Canto, Sebastian ;
Farias, Gonzalo .
PLOS ONE, 2022, 17 (05)
[10]   The Lick planet search: Detectability and mass thresholds [J].
Cumming, A ;
Marcy, GW ;
Butler, RP .
ASTROPHYSICAL JOURNAL, 1999, 526 (02) :890-915