INVISCID WATER-WAVES AND INTERFACE MODELING

被引:1
作者
Dormy, Emmanuel [1 ]
Lacave, Christophe [2 ,3 ]
机构
[1] PSL Univ, Ecole Super, Dept Math & Applicat, CNRS,UMR 8553, F-75005 Paris, France
[2] Univ Grenoble Alpes, CNRS, IF, F-38000 Grenoble, France
[3] Univ Savoie Mont Blanc, CNRS, LAMA, F-73000 Chambery, France
关键词
Singular integral formulations; vortex and dipole formulation; overturning waves; splash singularity; WELL-POSEDNESS; VORTEX METHOD; SINGULARITIES; CONVERGENCE; EQUATION;
D O I
10.1090/qam/1685
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a rigorous mathematical analysis of the modeling of inviscid water waves. The free-surface is described as a parametrized curve. We introduce a numerically stable algorithm which accounts for its evolution with time. The method is shown to converge using approximate solutions, such as Stokes waves and Green-Naghdi solitary waves. It is finally tested on a wave breaking problem, for which an odd-even coupling suffices to achieve numerical convergence up to the splash without the need for additional filtering.
引用
收藏
页码:583 / 637
页数:55
相关论文
共 37 条
  • [1] On the Cauchy problem for gravity water waves
    Alazard, T.
    Burq, N.
    Zuily, C.
    [J]. INVENTIONES MATHEMATICAE, 2014, 198 (01) : 71 - 163
  • [2] Boundary observability of gravity water waves
    Alazard, Thomas
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2018, 35 (03): : 751 - 779
  • [3] Numerical algorithms for water waves with background flow over obstacles and topography
    Ambrose, David M.
    Camassa, Roberto
    Marzuola, Jeremy L.
    McLaughlin, Richard M.
    Robinson, Quentin
    Wilkening, Jon
    [J]. ADVANCES IN COMPUTATIONAL MATHEMATICS, 2022, 48 (04)
  • [4] THE VORTEX METHOD FOR TWO-DIMENSIONAL IDEAL FLOWS IN EXTERIOR DOMAINS
    Arsenio, Diogo
    Dormy, Emmanuel
    Lacave, Christophe
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2020, 52 (04) : 3881 - 3961
  • [5] Baker G. R., 1983, Waves on Fluid Interfaces. Proceedings of a Symposium, P53
  • [6] GENERALIZED VORTEX METHODS FOR FREE-SURFACE FLOW PROBLEMS
    BAKER, GR
    MEIRON, DI
    ORSZAG, SA
    [J]. JOURNAL OF FLUID MECHANICS, 1982, 123 (OCT) : 477 - 501
  • [7] Singularities in the complex physical plane for deep water waves
    Baker, Gregory R.
    Xie, Chao
    [J]. JOURNAL OF FLUID MECHANICS, 2011, 685 : 83 - 116
  • [8] Convergence of a boundary integral method for water waves
    Beale, JT
    Hou, TY
    Lowengrub, J
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1996, 33 (05) : 1797 - 1843
  • [9] Freely floating objects on a fluid governed by the Boussinesq equations
    Beck, Geoffrey
    Lannes, David
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2022, 39 (03): : 575 - 646
  • [10] 2D Euler equation on the strip: Stability of a rectangular patch
    Beichman, Jennifer
    Denisov, Sergey
    [J]. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2017, 42 (01) : 100 - 120