Enhanced Oxidation Resistance of ZrB2-SiC-WC Composite below 1800 °C

被引:0
作者
Nussbaum, Elad [1 ]
Shter, Gennady E. [1 ]
Mann-Lahav, Meirav [1 ]
Grader, Gideon S. [1 ,2 ]
机构
[1] Technion Israel Inst Technol, Wolfson Dept Chem Engn, IL-3200003 Haifa, Israel
[2] Technion Israel Inst Technol, Grand Technion Energy Program GTEP, IL-3200003 Haifa, Israel
关键词
composites; oxidation; resistance; ultrahigh temperatures; ultrahigh-temperature ceramics; DIBORIDE-SILICON CARBIDE; ZIRCONIUM DIBORIDE; TUNGSTEN CARBIDE; SOLID-SOLUTION; CERAMICS; ZRB2; DENSIFICATION; BORON; TRANSITION; CONVECTION;
D O I
10.1002/adem.202301976
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The effect of 3.6 vol% WC addition to ZrB2-20 vol% SiC (ZSW) on oxidation resistance is studied over a broad range of oxidation temperatures, 1000-1800 degrees C. Non-WC-containing samples (ZS) show significant surface damage and degradation during oxidation, losing protective B2O3 and SiO2-based surface layers and exposing a porous ZrO2 layer and base material for further oxidation. ZSW samples preserve their surface protective layers during oxidation up to 1800 degrees C while the underlying ZrO2 scale remains dense. The appearance of convection cells on the surface of ZSW samples during oxidation above 1600 degrees C is reported. This confirms the presence of boron-rich phases, suppressing oxygen permeation into the material and enhancing oxidation resistance of ZSW samples. During exposure of the samples to 1800 degrees C for 15 min, ZS and ZSW samples gain 11.1 +/- 1.5 and 7.8 +/- 0.3 mg cm(-2), respectively, due to oxidation. Exposure of the composites for 5 h at 1600 degrees C results in weight gains of 10.5 and 7.0 mg cm(-2) for ZS and ZSW samples, respectively. Cross sections of oxidized samples at 1800 degrees C show a tight zirconia layer below a glassy surface in ZSW and complete loss of surface glass in ZS, demonstrating the effectiveness of WC addition.
引用
收藏
页数:11
相关论文
共 57 条
  • [1] Passive/active oxidation transition for CMC structural materials designed for the IXV vehicle re-entry phase
    Balat-Pichelin, M.
    Charpentier, L.
    Panerai, F.
    Chazot, O.
    Helber, B.
    Nickel, K.
    [J]. JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2015, 35 (02) : 487 - 502
  • [2] BUTTERMAN WC, 1967, AM MINERAL, V52, P880
  • [3] Cavaliere P., 2019, SPARK PLASMA SINTERI, DOI [DOI 10.1007/978-3-030-05327-7_1, 10.1007/978-3-030-05327-7, 10.1007/978-3-030-05327-7_1]
  • [4] Chen S. Y., 2020, AIAA SCI TECH 2020 F
  • [5] Dendashti M. K., 2015, CORROS SCI, V91, P224
  • [6] Effect of solid solution and boron vacancy on the microstructural evolution and high temperature strength of W-doped ZrB2 ceramics
    Ding, Hao-Jie
    Wang, Xin-Gang
    Xia, Jin-Feng
    Bao, Wei-Chao
    Zhang, Guo-Jun
    Zhang, Cheng
    Jiang, Dan-Yu
    [J]. JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 827
  • [7] Oxidation of ultra-high temperature transition metal diboride ceramics
    Fahrenholtz, W. G.
    Hilmas, G. E.
    [J]. INTERNATIONAL MATERIALS REVIEWS, 2012, 57 (01) : 61 - 72
  • [8] Fahrenholtz W.G., 2012, Ultra-High Temperature Ceramics: Materials for Extreme Environment Applications, P1
  • [9] Pressureless sintering of zirconium diboride: Particle size and additive effects
    Fahrenholtz, William G.
    Hilmas, Gregory E.
    Zhang, Shi C.
    Zhu, Sumin
    [J]. JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2008, 91 (05) : 1398 - 1404
  • [10] Thermodynamic analysis of ZrB2-SiC oxidation:: Formation of a SiC-depleted region
    Fahrenholtz, William G.
    [J]. JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2007, 90 (01) : 143 - 148