A multimodal machine learning model for predicting dementia conversion in Alzheimer's disease

被引:2
|
作者
Lee, Min-Woo [1 ]
Kim, Hye Weon [1 ]
Choe, Yeong Sim [1 ]
Yang, Hyeon Sik [1 ]
Lee, Jiyeon [1 ]
Lee, Hyunji [1 ]
Yong, Jung Hyeon [1 ]
Kim, Donghyeon [1 ]
Lee, Minho [1 ]
Kang, Dong Woo [2 ]
Jeon, So Yeon [3 ,4 ]
Son, Sang Joon [5 ]
Lee, Young-Min [6 ]
Kim, Hyug-Gi [7 ]
Kim, Regina E. Y. [1 ]
Lim, Hyun Kook [8 ,9 ]
机构
[1] Neurophet Inc, Res Inst, Seoul 06234, South Korea
[2] Catholic Univ Korea, Seoul St Marys Hosp, Coll Med, Dept Psychiat, Seoul 06591, South Korea
[3] Chungnam Natl Univ Hosp, Dept Psychiat, Daejeon 35015, South Korea
[4] Chungnam Natl Univ, Coll Med, Dept Psychiat, Daejeon 35015, South Korea
[5] Ajou Univ, Sch Med, Dept Psychiat, Suwon 16499, South Korea
[6] Pusan Natl Univ, Sch Med, Dept Psychiat, Busan 49241, South Korea
[7] Kyung Hee Univ, Kyung Hee Univ Hosp, Sch Med, Dept Radiol, Seoul 02447, South Korea
[8] Catholic Univ Korea, Yeouido St Marys Hosp, Coll Med, Dept Psychiat, 10 63 Ro, Seoul 07345, South Korea
[9] Catholic Univ Korea, CMC Inst Basic Med Sci, Catholic Med Ctr, 222 Banpo Daero, Seoul 06591, South Korea
来源
SCIENTIFIC REPORTS | 2024年 / 14卷 / 01期
关键词
MILD COGNITIVE IMPAIRMENT; PROGRESSION; MRI; ATROPHY;
D O I
10.1038/s41598-024-60134-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Alzheimer's disease (AD) accounts for 60-70% of the population with dementia. Mild cognitive impairment (MCI) is a diagnostic entity defined as an intermediate stage between subjective cognitive decline and dementia, and about 10-15% of people annually convert to AD. We aimed to investigate the most robust model and modality combination by combining multi-modality image features based on demographic characteristics in six machine learning models. A total of 196 subjects were enrolled from four hospitals and the Alzheimer's Disease Neuroimaging Initiative dataset. During the four-year follow-up period, 47 (24%) patients progressed from MCI to AD. Volumes of the regions of interest, white matter hyperintensity, and regional Standardized Uptake Value Ratio (SUVR) were analyzed using T1, T2-weighted-Fluid-Attenuated Inversion Recovery (T2-FLAIR) MRIs, and amyloid PET (alpha PET), along with automatically provided hippocampal occupancy scores (HOC) and Fazekas scales. As a result of testing the robustness of the model, the GBM model was the most stable, and in modality combination, model performance was further improved in the absence of T2-FLAIR image features. Our study predicts the probability of AD conversion in MCI patients, which is expected to be useful information for clinician's early diagnosis and treatment plan design.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] A Two-Stage Model for Predicting Mild Cognitive Impairment to Alzheimer's Disease Conversion
    Lu, Peixin
    Hu, Lianting
    Zhang, Ning
    Liang, Huiying
    Tian, Tao
    Lu, Long
    FRONTIERS IN AGING NEUROSCIENCE, 2022, 14
  • [42] Predicting progression to Alzheimer's disease dementia using cognitive measures
    Macdougall, Amy
    Whitfield, Tim
    Needham, Kelly
    Schott, Jonathan M.
    Frost, Chris
    Walker, Zuzana
    INTERNATIONAL JOURNAL OF GERIATRIC PSYCHIATRY, 2024, 39 (02)
  • [43] Hypoperfusion in Alzheimer's Disease-Prone Regions and Dementia Conversion in Parkinson's Disease
    Chun, Min Young
    Lee, Taein
    Kim, Su Hong
    Lee, Hye Sun
    Kim, Yun Joong
    Lee, Phil Hyu
    Sohn, Young H.
    Jeong, Yong
    Chung, Seok Jong
    CLINICAL NUCLEAR MEDICINE, 2024, 49 (06) : 521 - 528
  • [44] Rate of Conversion from Prodromal Alzheimer's Disease to Alzheimer's Dementia: A Systematic Review of the Literature
    Ward, Alex
    Tardiff, Sarah
    Dye, Catherine
    Arrighi, H. Michael
    DEMENTIA AND GERIATRIC COGNITIVE DISORDERS EXTRA, 2013, 3 (01) : 320 - 332
  • [45] Plasma lipidomic signatures of dementia with Lewy bodies revealed by machine learning, and compared to alzheimer's disease
    Shen, Huixin
    Yu, Yueyi
    Wang, Jing
    Nie, Yuting
    Tang, Yi
    Qu, Miao
    ALZHEIMERS RESEARCH & THERAPY, 2024, 16 (01)
  • [46] Neuroimaging Biomarkers Predicting the Efficacy of Multimodal Rehabilitative Intervention in the Alzheimer's Dementia Continuum Pathology
    Di Tella, Sonia
    Cabinio, Monia
    Isernia, Sara
    Blasi, Valeria
    Rossetto, Federica
    Saibene, Francesca Lea
    Alberoni, Margherita
    Silveri, Maria Caterina
    Sorbi, Sandro
    Clerici, Mario
    Baglio, Francesca
    FRONTIERS IN AGING NEUROSCIENCE, 2021, 13
  • [47] AN EFFICIENT DEEP LEARNING MODEL FOR PREDICTING ALZHEIMER'S DISEASE DIAGNOSIS BY USING PET
    Peng Yifan
    Ding Bowen
    2020 17TH INTERNATIONAL COMPUTER CONFERENCE ON WAVELET ACTIVE MEDIA TECHNOLOGY AND INFORMATION PROCESSING (ICCWAMTIP), 2020, : 366 - 372
  • [48] Diagnosis of Alzheimer's Disease using Machine Learning
    Lodha, Priyanka
    Talele, Ajay
    Degaonkar, Kishori
    2018 FOURTH INTERNATIONAL CONFERENCE ON COMPUTING COMMUNICATION CONTROL AND AUTOMATION (ICCUBEA), 2018,
  • [49] PREDICTING SCHIZOPHRENIA: IDENTIFICATION OF MULTIMODAL MARKERS OF DISEASE THROUGH A MACHINE LEARNING APPROACH
    Antonucci, Linda
    Pergola, Giulio
    Dwyer, Dominic
    Torretta, Silvia
    Attrotto, Maria Teresa
    Romano, Raffaella
    Gelao, Barbara
    Masellis, Rita
    Rampino, Antonio
    Caforio, Grazia
    Blasi, Giuseppe
    Koutsouleris, Nikolaos
    Bertolino, Alessandro
    SCHIZOPHRENIA BULLETIN, 2018, 44 : S100 - S101
  • [50] Predicting disease severity in multiple sclerosis using multimodal data and machine learning
    Andorra, Magi
    Freire, Ana
    Zubizarreta, Irati
    de Rosbo, Nicole Kerlero
    Bos, Steffan D.
    Rinas, Melanie
    Hogestol, Einar A.
    Benavent, Sigrid A. de Rodez
    Berge, Tone
    Brune-Ingebretse, Synne
    Ivaldi, Federico
    Cellerino, Maria
    Pardini, Matteo
    Vila, Gemma
    Pulido-Valdeolivas, Irene
    Martinez-Lapiscina, Elena H.
    Llufriu, Sara
    Saiz, Albert
    Blanco, Yolanda
    Martinez-Heras, Eloy
    Solana, Elisabeth
    Baecker-Koduah, Priscilla
    Behrens, Janina
    Kuchling, Joseph
    Asseyer, Susanna
    Scheel, Michael
    Chien, Claudia
    Zimmermann, Hanna
    Motamedi, Seyedamirhosein
    Kauer-Bonin, Josef
    Brandt, Alex
    Saez-Rodriguez, Julio
    Alexopoulos, Leonidas G.
    Paul, Friedemann
    Harbo, Hanne F.
    Shams, Hengameh
    Oksenberg, Jorge
    Uccelli, Antonio
    Baeza-Yates, Ricardo
    Villoslada, Pablo
    JOURNAL OF NEUROLOGY, 2024, 271 (03) : 1133 - 1149