Application of deep learning-based ethnic music therapy for selecting repertoire

被引:0
|
作者
Zhang, Yehua [1 ]
Zhang, Yan [2 ]
机构
[1] Shunde Polytech, Labour Union, Foshan, Peoples R China
[2] Hainan Univ, Sch Food & Safety, Haikou, Peoples R China
关键词
Ethnic music; music therapy; repertoire selection; deep learning;
D O I
10.3233/JIFS-230893
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
With the advancement of modern medical concepts, the beneficial effects of music on human health have gradually become accepted, and the corresponding music therapy has gradually become a new research direction that has received much attention in recent years. However, folk music has certain peculiarities that lead to the fact that there is no efficient way of selecting repertoire that can be carried out directly throughout the repertoire selection. This paper combines deep learning theory with ethnomusic therapy based on previous research and proposes a deep learning-based approach to ethnomusic therapy song selection. Since the feature extraction process in the traditional sense has insufficient information on each frame, excessive redundancy, inability to process multiple frames of continuous music signals containing relevant music features and weak noise immunity, it increases the computational effort and reduces the efficiency of the system. To address the above shortcomings, this paper introduces deep learning methods into the feature extraction process, combining the feature extraction process of the Deep Auto-encoder (DAE) with the music classification process of Gaussian mixture model, which forms a new DAE-GMM music classification model. Finally, in terms of music therapy selection, this paper compares the music selection method based on co-matrix and physiological signal with the one in this paper. From the theoretical and simulation plots, it can be seen that the method proposed in this paper can achieve both good music classifications from a large number of music and further optimize the process of music therapy song selection from both subjective and objective aspects by considering the therapeutic effect of music on patients. Through this article research results found that the depth of optimization feature vector to construct double the accuracy of the classifier is higher, in addition, compared with the characteristics of the original optimization classification model, using the gaussian mixture model can more accurately classify music, the original landscape "hometown" score of 0.9487, is preferred, insomnia patients mainly ceramic flute style soft tone, without excitant, low depression, have composed of nourishing the heart function.
引用
收藏
页码:5405 / 5414
页数:10
相关论文
共 50 条
  • [1] Application of deep learning-based speech system in online music learning system
    Wei, Bo
    Ma, Shanshan
    SOFT COMPUTING, 2023,
  • [2] Deep Learning-Based Music Chord Family Identification
    Mukherjee, Himadri
    Dhar, Ankita
    Paul, Bachchu
    Obaidullah, Sk Md
    Santosh, K. C.
    Phadikar, Santanu
    Roy, Kaushik
    INTELLIGENT COMPUTING AND COMMUNICATION, ICICC 2019, 2020, 1034 : 175 - 184
  • [3] Application of Deep Learning-Based Image Processing in Emotion Recognition and Psychological Therapy
    Liu, Yang
    Zhang, Yawen
    Wang, Yuan
    TRAITEMENT DU SIGNAL, 2024, 41 (06) : 2923 - 2933
  • [4] Selecting the best optimizers for deep learning-based medical image segmentation
    Mortazi, Aliasghar
    Cicek, Vedat
    Keles, Elif
    Bagci, Ulas
    FRONTIERS IN RADIOLOGY, 2023, 3
  • [5] DEEP LEARNING-BASED EMOTION RECOGNITION ALGORITHMS IN MUSIC PERFORMANCE
    Zhang, Yan
    Li, Muquan
    Pan, Shuang
    SCALABLE COMPUTING-PRACTICE AND EXPERIENCE, 2024, 25 (06): : 4712 - 4719
  • [6] A Deep Learning-Based Mobile Application for Monkeypox Detection
    Alhasson, Haifa F.
    Almozainy, Elaf
    Alharbi, Manar
    Almansour, Naseem
    Alharbi, Shuaa S.
    Khan, Rehan Ullah
    APPLIED SCIENCES-BASEL, 2023, 13 (23):
  • [7] Deep learning-based network application classification for SDN
    Zhang, Chuangchuang
    Wang, Xingwei
    Li, Fuliang
    He, Qiang
    Huang, Min
    TRANSACTIONS ON EMERGING TELECOMMUNICATIONS TECHNOLOGIES, 2018, 29 (05):
  • [8] Deep Learning-Based Application of Image Style Transfer
    Liao, Yimi
    Huang, Youfu
    Mathematical Problems in Engineering, 2022, 2022
  • [9] Deep Learning-Based Application of Image Style Transfer
    Liao, YiMi
    Huang, YouFu
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2022, 2022
  • [10] Deep learning-based smart vision for building and construction application
    Yue, Li
    ADVANCES IN CONCRETE CONSTRUCTION, 2024, 18 (01) : 65 - 74