Implementation of machine learning techniques for the analysis of wave energy conversion systems: a comprehensive review

被引:0
|
作者
Masoumi, Masoud [1 ]
Estejab, Bahareh [2 ]
Henry, Frank [2 ]
机构
[1] Cooper Union Adv Sci & Art, Dept Mech Engn, New York, NY 10008 USA
[2] Manhattan Coll, Dept Mech Engn, Bronx, NY 10471 USA
关键词
Wave energy converter; Marine energy; Data-driven modeling; Wave energy converter array; Wave prediction; Wave farm; ARTIFICIAL NEURAL-NETWORK; HEAVE DISPLACEMENT; GENETIC ALGORITHM; CONVERTERS; PERFORMANCE; PREDICTION; HEIGHT; MODEL;
D O I
10.1007/s40722-024-00330-4
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In recent years, marine energy research, like many other branches of science and engineering, has explored the use of increasingly advanced machine learning techniques. Data-driven and machine learning techniques have been shown to be particularly useful in investigating the complex fluid-structure interactions between electromechanical and hydraulic systems and ocean waves. This work provides a comprehensive review of studies that have implemented machine learning and data-driven approaches for system modeling, developing control algorithms, optimizing the system using data-driven modeling, forecasting power generation, and conducting modeling and optimization of arrays of wave energy converters (WECs). The paper briefly discusses various wave energy conversion approaches along with the machine learning techniques typically used in wave energy research. The literature is divided into three main areas: WEC modeling, modeling of WEC arrays, and works focused on forecasting wave characteristics to evaluate the performance of WECs. Finally, the paper discusses the prospective research and development of data-driven and machine learning techniques in this field. The review encompasses literature published between 2008 and 2022.
引用
收藏
页码:641 / 670
页数:30
相关论文
共 50 条
  • [1] A Comprehensive Review of the Application of Machine Learning in Fabrication and Implementation of Photovoltaic Systems
    Datta, Srabanti
    Baul, Anik
    Sarker, Gobinda Chandra
    Sadhu, Pintu Kumar
    Hodges, Deidra R. R.
    IEEE ACCESS, 2023, 11 : 77750 - 77778
  • [2] Leveraging the machine learning techniques for demand-side flexibility - A comprehensive review
    Shahid, Arqum
    Ahmadiahangar, Roya
    Rosin, Argo
    Blinov, Andrei
    Korotko, Tarmo
    Vinnikov, Dmitri
    ELECTRIC POWER SYSTEMS RESEARCH, 2025, 238
  • [3] Machine learning techniques for prediction of capacitance and remaining useful life of supercapacitors: A comprehensive review
    Sawant, Vaishali
    Deshmukh, Rashmi
    Awati, Chetan
    JOURNAL OF ENERGY CHEMISTRY, 2023, 77 : 438 - 451
  • [4] Machine Learning Applications in Building Energy Systems: Review and Prospects
    Li, Daoyang
    Qi, Zhenzhen
    Zhou, Yiming
    Elchalakani, Mohamed
    BUILDINGS, 2025, 15 (04)
  • [5] A Comprehensive Review on Machine Learning Techniques for Forecasting Wind Flow Pattern
    Sri Preethaa, K. R.
    Muthuramalingam, Akila
    Natarajan, Yuvaraj
    Wadhwa, Gitanjali
    Ali, Ahmed Abdi Yusuf
    SUSTAINABILITY, 2023, 15 (17)
  • [6] A Review on Machine/Deep Learning Techniques Applied to Building Energy Simulation, Optimization and Management
    Villano, Francesca
    Mauro, Gerardo Maria
    Pedace, Alessia
    THERMO, 2024, 4 (01): : 100 - 139
  • [7] Machine learning application in building energy consumption prediction: A comprehensive review
    Ji, Jingsong
    Yu, Hao
    Wang, Xudong
    Xu, Xiaoxiao
    JOURNAL OF BUILDING ENGINEERING, 2025, 104
  • [8] Applications of machine learning techniques in performance evaluation of solar desalination systems - A concise review
    Rashidi, Saman
    Karimi, Nader
    Yan, Wei-Mon
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2022, 144 : 399 - 408
  • [9] Application of Machine Learning and Deep Learning in Finite Element Analysis: A Comprehensive Review
    Nath, Dipjyoti
    Ankit
    Neog, Debanga Raj
    Gautam, Sachin Singh
    ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 2024, 31 (05) : 2945 - 2984
  • [10] Machine Learning and Deep Learning in Energy Systems: A Review
    Forootan, Mohammad Mahdi
    Larki, Iman
    Zahedi, Rahim
    Ahmadi, Abolfazl
    SUSTAINABILITY, 2022, 14 (08)