FRACTIONAL MULTIPLICATIVE OSTROWSKI-TYPE INEQUALITIES FOR MULTIPLICATIVE DIFFERENTIABLE CONVEX FUNCTIONS

被引:2
|
作者
Meftah, Badreddine [1 ]
Boulares, Hamid [2 ]
Khan, Aziz [3 ]
Abdeljawad, Thabet [3 ,4 ]
机构
[1] Univ 8 May 1945 Guelma, Dept Math, POB 401, Guelma 24000, Algeria
[2] Univ 8 May1945 Guelma, Fac MISM, Dept Math, Lab Anal & Control Differential Equat ACED, Guelma, Algeria
[3] Prince Sultan Univ, Dept Math & Sci, POB 66833, Riyadh 11586, Saudi Arabia
[4] Sefako Makgatho Hlth Sci Univ, Sch Sci & Technol, Dept Math Appl Math, Ga Rankuwa, South Africa
来源
关键词
Non-Newtonian calculus; Ostrowski inequality; multiplicative convex functions; HERMITE-HADAMARD TYPE; INTEGRAL-INEQUALITIES;
D O I
10.47013/17.1.7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this manuscript, we propose a new fractional identity for multiplicative differentiable functions, based on this identity we prove some fractional Ostrowski-type inequalities for multiplicative convex functions. Some applications of the obtained results are given.
引用
收藏
页码:113 / 128
页数:16
相关论文
共 50 条
  • [31] SOME OSTROWSKI-MERCER TYPE INEQUALITIES FOR DIFFERENTIABLE CONVEX FUNCTIONS VIA FRACTIONAL INTEGRAL OPERATORS WITH STRONG KERNELS
    Butt, Saad Ihsan
    Nasir, Jamshed
    Dokuyucu, Mustafa Ali
    Akdemir, Ahmet Ocak
    Set, Erhan
    APPLIED AND COMPUTATIONAL MATHEMATICS, 2022, 21 (03) : 329 - 348
  • [32] Quantum Ostrowski-type integral inequalities for functions of two variables
    Budak, Huseyin
    Ali, Muhammad Aamir
    Tunc, Tuba
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (07) : 5857 - 5872
  • [33] Ostrowski-type fractional integral inequalities for mappings whose derivatives are h-convex via Katugampola fractional integrals
    Farid, Ghulam
    Katugampola, Udita N.
    Usman, Muhammad
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2018, 63 (04): : 465 - 474
  • [34] Ostrowski-Type Inequalities for Functions of Two Variables in Banach Spaces
    Latif, Muhammad Amer
    Almutairi, Ohud Bulayhan
    MATHEMATICS, 2024, 12 (17)
  • [35] Ostrowski-type inequalities pertaining to Atangana–Baleanu fractional operators and applications containing special functions
    Soubhagya Kumar Sahoo
    Bibhakar Kodamasingh
    Artion Kashuri
    Hassen Aydi
    Eskandar Ameer
    Journal of Inequalities and Applications, 2022
  • [36] New bounds for the Ostrowski-type inequalities via conformable fractional calculus
    Usta F.
    Budak H.
    Tunç T.
    Sarikaya M.Z.
    Arabian Journal of Mathematics, 2018, 7 (4) : 317 - 328
  • [37] Quantum Analogs of Ostrowski-Type Inequalities for Raina's Function correlated with Coordinated Generalized φ-Convex Functions
    Chu, Hong-Hu
    Kalsoom, Humaira
    Rashid, Saima
    Idrees, Muhammad
    Safdar, Farhat
    Chu, Yu-Ming
    Baleanu, Dumitru
    SYMMETRY-BASEL, 2020, 12 (02):
  • [38] On Ostrowski-Mercer's Type Fractional Inequalities for Convex Functions and Applications
    Sahoo, Soubhagya Kumar
    Kashuri, Artion
    Aljuaid, Munirah
    Mishra, Soumyarani
    De La Sen, Manuel
    FRACTAL AND FRACTIONAL, 2023, 7 (03)
  • [39] On Ostrowski-Mercer inequalities for differentiable harmonically convex functions with applications
    Ali, Muhammad Aamir
    Asjad, Muhammad Imran
    Budak, Huseyin
    Faridi, Waqas Ali
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (08) : 8546 - 8559
  • [40] Ostrowski-type inequalities pertaining to Atangana-Baleanu fractional operators and applications containing special functions
    Sahoo, Soubhagya Kumar
    Kodamasingh, Bibhakar
    Kashuri, Artion
    Aydi, Hassen
    Ameer, Eskandar
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2022, 2022 (01)