DoS Attack Detection Based on Deep Factorization Machine in SDN

被引:0
|
作者
Wang J. [1 ]
Lei X. [1 ]
Jiang Q. [1 ]
Alfarraj O. [2 ]
Tolba A. [2 ]
Kim G.-J. [3 ]
机构
[1] School of Computer & Communication Engineering, Changsha University of Science & Technology, Changsha
[2] Computer Science Department, Community College, King Saud University, Riyadh
[3] Department of Computer Engineering, Chonnam National University, Gwangju
来源
Computer Systems Science and Engineering | 2023年 / 45卷 / 02期
关键词
deep factorization machine; denial-of-service attacks; GRMMP; Software-defined network;
D O I
10.32604/csse.2023.030183
中图分类号
学科分类号
摘要
Software-Defined Network (SDN) decouples the control plane of network devices from the data plane. While alleviating the problems presented in traditional network architectures, it also brings potential security risks, particularly network Denial-of-Service (DoS) attacks. While many research efforts have been devoted to identifying new features for DoS attack detection, detection methods are less accurate in detecting DoS attacks against client hosts due to the high stealth of such attacks. To solve this problem, a new method of DoS attack detection based on Deep Factorization Machine (DeepFM) is proposed in SDN. Firstly, we select the Growth Rate of Max Matched Packets (GRMMP) in SDN as detection feature. Then, the DeepFM algorithm is used to extract features from flow rules and classify them into dense and discrete features to detect DoS attacks. After training, the model can be used to infer whether SDN is under DoS attacks, and a DeepFM-based detection method for DoS attacks against client host is implemented. Simulation results show that our method can effectively detect DoS attacks in SDN. Compared with the K-Nearest Neighbor (K-NN), Artificial Neural Network (ANN) models, Support Vector Machine (SVM) and Random Forest models, our proposed method outperforms in accuracy, precision and F1 values. © 2023 CRL Publishing. All rights reserved.
引用
收藏
页码:1727 / 1742
页数:15
相关论文
共 50 条
  • [1] A DDoS Attack Detection Method Based on Information Entropy and Deep Learning in SDN
    Wang, Lu
    Liu, Ying
    PROCEEDINGS OF 2020 IEEE 4TH INFORMATION TECHNOLOGY, NETWORKING, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (ITNEC 2020), 2020, : 1084 - 1088
  • [2] DDoS attack detection and defense based on hybrid deep learning model in SDN
    Li C.
    Wu Y.
    Qian Z.
    Sun Z.
    Wang W.
    2018, Editorial Board of Journal on Communications (39): : 176 - 187
  • [3] Detection and defense of DDoS attack-based on deep learning in OpenFlow-based SDN
    Li, Chuanhuang
    Wu, Yan
    Yuan, Xiaoyong
    Sun, Zhengjun
    Wang, Weiming
    Li, Xiaolin
    Gong, Liang
    INTERNATIONAL JOURNAL OF COMMUNICATION SYSTEMS, 2018, 31 (05)
  • [4] Cooperative defense of DDoS attack based on machine learning in SDN
    Shang L.
    Chen M.
    Zhang L.
    Liu X.
    Shi T.
    Li B.
    Dianli Xitong Baohu yu Kongzhi/Power System Protection and Control, 2021, 49 (16): : 170 - 176
  • [5] Low-Rate DDoS Attack Detection Based on Factorization Machine in Software Defined Network
    Wu Zhijun
    Xu Qing
    Wang Jingjie
    Yue Meng
    Liu Liang
    IEEE ACCESS, 2020, 8 : 17404 - 17418
  • [6] Secure SDN–IoT Framework for DDoS Attack Detection Using Deep Learning and Counter Based Approach
    Mimi Cherian
    Satishkumar L. Varma
    Journal of Network and Systems Management, 2023, 31
  • [7] SDN-based ARP Attack Detection for Cloud Centers
    Ma, Huan
    Ding, Hao
    Yang, Yang
    Mi, Zhenqiang
    Zhang, Miao
    IEEE 12TH INT CONF UBIQUITOUS INTELLIGENCE & COMP/IEEE 12TH INT CONF ADV & TRUSTED COMP/IEEE 15TH INT CONF SCALABLE COMP & COMMUN/IEEE INT CONF CLOUD & BIG DATA COMP/IEEE INT CONF INTERNET PEOPLE AND ASSOCIATED SYMPOSIA/WORKSHOPS, 2015, : 1049 - 1054
  • [8] Secure SDN-IoT Framework for DDoS Attack Detection Using Deep Learning and Counter Based Approach
    Cherian, Mimi
    Varma, Satishkumar L.
    JOURNAL OF NETWORK AND SYSTEMS MANAGEMENT, 2023, 31 (03)
  • [9] Deep Learning Based Attack Detection and QoS Aware Secure Routing Protocol for SDN-IoT Network
    Gali, Manvitha
    Mahamkali, Aditya
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2025, 37 (6-8):
  • [10] Efficient DDoS attack detection and prevention scheme based on SDN in cloud environment
    He H.
    Hu Y.
    Zheng L.
    Xue Z.
    He, Heng (heheng@wust.edu.cn), 2018, Editorial Board of Journal on Communications (39): : 139 - 151