The Levenberg-Marquardt method: an overview of modern convergence theories and more

被引:8
|
作者
Fischer, Andreas [1 ]
Izmailov, Alexey F. [2 ,3 ]
Solodov, Mikhail V. [4 ]
机构
[1] Tech Univ Dresden, Fac Math, D-01062 Dresden, Germany
[2] Lomonosov Moscow State Univ MSU, VMK Fac, OR Dept, Uchebniy Korpus 2, Moscow 119991, Russia
[3] Derzhavin Tambov State Univ TSU, Int 33, Tambov 392000, Russia
[4] IMPA Inst Matemat Pura & Aplicada, Estr Dona Castorina 110, BR-22460320 Rio De Janeiro, RJ, Brazil
关键词
Nonlinear equation; Constrained equation; Piecewise smooth equation; Nonisolated solution; Local error bound; Gauss-Newton method; Levenberg-Marquardt method; LP-Newton method; Singular solution; LEAST-SQUARES FORMULATION; NASH EQUILIBRIUM PROBLEMS; NEWTON METHOD; NONLINEAR EQUATIONS; ALGORITHM; SYSTEMS; PARAMETER;
D O I
10.1007/s10589-024-00589-1
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
The Levenberg-Marquardt method is a fundamental regularization technique for the Newton method applied to nonlinear equations, possibly constrained, and possibly with singular or even nonisolated solutions. We review the literature on the subject, in particular relating to each other various convergence frameworks and results. In this process, the analysis is performed from a unified perspective, and some new results are obtained as well. We discuss smooth and piecewise smooth equations, inexact solution of subproblems, and globalization techniques. Attention is also paid to the LP-Newton method, because of its relations to the Levenberg-Marquardt method.
引用
收藏
页码:33 / 67
页数:35
相关论文
共 50 条
  • [41] A higher-order Levenberg-Marquardt method for nonlinear equations
    Yang, Xiao
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (22) : 10682 - 10694
  • [42] A modified Levenberg-Marquardt method with line search for nonlinear equations
    Chen, Liang
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2016, 65 (03) : 753 - 779
  • [43] A Levenberg-Marquardt Method for Tensor Approximation
    Zhao, Jinyao
    Zhang, Xuejuan
    Zhao, Jinling
    SYMMETRY-BASEL, 2023, 15 (03):
  • [44] Improved convergence results for a modified Levenberg-Marquardt method for nonlinear equations and applications in MPCC
    Zhu, Xide
    Lin, Gui-Hua
    OPTIMIZATION METHODS & SOFTWARE, 2016, 31 (04) : 791 - 804
  • [45] Convergence properties of a family of inexact Levenberg-Marquardt methods
    Zhao, Luyao
    Tang, Jingyong
    AIMS MATHEMATICS, 2023, 8 (08): : 18649 - 18664
  • [46] A smoothing Levenberg-Marquardt method for nonlinear complementarity problems
    Song, Linsen
    Gao, Yan
    NUMERICAL ALGORITHMS, 2018, 79 (04) : 1305 - 1321
  • [47] Globally Convergent Levenberg-Marquardt Method for Phase Retrieval
    Ma, Chao
    Liu, Xin
    Wen, Zaiwen
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2019, 65 (04) : 2343 - 2359
  • [48] An Adaptive Multi-step Levenberg-Marquardt Method
    Fan, Jinyan
    Huang, Jianchao
    Pan, Jianyu
    JOURNAL OF SCIENTIFIC COMPUTING, 2019, 78 (01) : 531 - 548
  • [49] A LEVENBERG-MARQUARDT METHOD FOR NONSMOOTH REGULARIZED LEAST SQUARES
    Aravkin, Aleksandr y.
    Baraldi, Robert
    Orban, Dominique
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2024, 46 (04) : A2557 - A2581
  • [50] QUADRATIC CONVERGENCE OF LEVENBERG-MARQUARDT METHOD FOR ELLIPTIC AND PARABOLIC INVERSE ROBIN PROBLEMS
    Jiang, Daijun
    Feng, Hui
    Zou, Jun
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2018, 52 (03): : 1085 - 1107