The Levenberg-Marquardt method: an overview of modern convergence theories and more

被引:8
|
作者
Fischer, Andreas [1 ]
Izmailov, Alexey F. [2 ,3 ]
Solodov, Mikhail V. [4 ]
机构
[1] Tech Univ Dresden, Fac Math, D-01062 Dresden, Germany
[2] Lomonosov Moscow State Univ MSU, VMK Fac, OR Dept, Uchebniy Korpus 2, Moscow 119991, Russia
[3] Derzhavin Tambov State Univ TSU, Int 33, Tambov 392000, Russia
[4] IMPA Inst Matemat Pura & Aplicada, Estr Dona Castorina 110, BR-22460320 Rio De Janeiro, RJ, Brazil
关键词
Nonlinear equation; Constrained equation; Piecewise smooth equation; Nonisolated solution; Local error bound; Gauss-Newton method; Levenberg-Marquardt method; LP-Newton method; Singular solution; LEAST-SQUARES FORMULATION; NASH EQUILIBRIUM PROBLEMS; NEWTON METHOD; NONLINEAR EQUATIONS; ALGORITHM; SYSTEMS; PARAMETER;
D O I
10.1007/s10589-024-00589-1
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
The Levenberg-Marquardt method is a fundamental regularization technique for the Newton method applied to nonlinear equations, possibly constrained, and possibly with singular or even nonisolated solutions. We review the literature on the subject, in particular relating to each other various convergence frameworks and results. In this process, the analysis is performed from a unified perspective, and some new results are obtained as well. We discuss smooth and piecewise smooth equations, inexact solution of subproblems, and globalization techniques. Attention is also paid to the LP-Newton method, because of its relations to the Levenberg-Marquardt method.
引用
收藏
页码:33 / 67
页数:35
相关论文
共 50 条
  • [31] Global complexity bound of the Levenberg-Marquardt method
    Zhao, Ruixue
    Fan, Jinyan
    OPTIMIZATION METHODS & SOFTWARE, 2016, 31 (04) : 805 - 814
  • [32] Simplified Levenberg-Marquardt Method in Hilbert Spaces
    Mahale, Pallavi
    Shaikh, Farheen M.
    COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2023, 23 (01) : 251 - 276
  • [33] Inexact Levenberg-Marquardt method for nonlinear equations
    Fan, JY
    Pan, JY
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2004, 4 (04): : 1223 - 1232
  • [34] Improving Power Flow Convergence by Newton Raphson with a Levenberg-Marquardt Method
    Lagace, P. J.
    Vuong, A. H.
    Kamwa, I.
    2008 IEEE POWER & ENERGY SOCIETY GENERAL MEETING, VOLS 1-11, 2008, : 4369 - +
  • [35] The quadratic convergence of a smoothing Levenberg-Marquardt method for nonlinear complementarity problem
    Ma, Changfeng
    Tang, Jia
    APPLIED MATHEMATICS AND COMPUTATION, 2008, 197 (02) : 566 - 581
  • [36] Convergence properties of Levenberg-Marquardt methods with generalized regularization terms
    Ariizumi, Shumpei
    Yamakawa, Yuya
    Yamashita, Nobuo
    APPLIED MATHEMATICS AND COMPUTATION, 2024, 463
  • [37] A smoothing Levenberg-Marquardt method for NCP
    Zhang, Ju-liang
    Zhang, Xiangsun
    APPLIED MATHEMATICS AND COMPUTATION, 2006, 178 (02) : 212 - 228
  • [38] Trust Region Levenberg-Marquardt Method for Linear SVM Trust Region Levenberg-Marquardt Method for Linear SVM
    Chauhan, Vinod Kumar
    Dahiya, Kalpana
    Sharma, Anuj
    2017 NINTH INTERNATIONAL CONFERENCE ON ADVANCES IN PATTERN RECOGNITION (ICAPR), 2017, : 380 - 385
  • [39] CONVERGENCE PROPERTIES OF INEXACT LEVENBERG-MARQUARDT METHOD UNDER HOLDERIAN LOCAL ERROR BOUND
    Wang, Haiyan
    Fan, Jinyan
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2021, 17 (04) : 2265 - 2275
  • [40] A modified two steps Levenberg-Marquardt method for nonlinear equations
    Amini, Keyvan
    Rostami, Faramarz
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 288 : 341 - 350