The Levenberg-Marquardt method: an overview of modern convergence theories and more
被引:8
|
作者:
Fischer, Andreas
论文数: 0引用数: 0
h-index: 0
机构:
Tech Univ Dresden, Fac Math, D-01062 Dresden, GermanyTech Univ Dresden, Fac Math, D-01062 Dresden, Germany
Fischer, Andreas
[1
]
Izmailov, Alexey F.
论文数: 0引用数: 0
h-index: 0
机构:
Lomonosov Moscow State Univ MSU, VMK Fac, OR Dept, Uchebniy Korpus 2, Moscow 119991, Russia
Derzhavin Tambov State Univ TSU, Int 33, Tambov 392000, RussiaTech Univ Dresden, Fac Math, D-01062 Dresden, Germany
Izmailov, Alexey F.
[2
,3
]
Solodov, Mikhail V.
论文数: 0引用数: 0
h-index: 0
机构:
IMPA Inst Matemat Pura & Aplicada, Estr Dona Castorina 110, BR-22460320 Rio De Janeiro, RJ, BrazilTech Univ Dresden, Fac Math, D-01062 Dresden, Germany
Solodov, Mikhail V.
[4
]
机构:
[1] Tech Univ Dresden, Fac Math, D-01062 Dresden, Germany
[2] Lomonosov Moscow State Univ MSU, VMK Fac, OR Dept, Uchebniy Korpus 2, Moscow 119991, Russia
[3] Derzhavin Tambov State Univ TSU, Int 33, Tambov 392000, Russia
[4] IMPA Inst Matemat Pura & Aplicada, Estr Dona Castorina 110, BR-22460320 Rio De Janeiro, RJ, Brazil
The Levenberg-Marquardt method is a fundamental regularization technique for the Newton method applied to nonlinear equations, possibly constrained, and possibly with singular or even nonisolated solutions. We review the literature on the subject, in particular relating to each other various convergence frameworks and results. In this process, the analysis is performed from a unified perspective, and some new results are obtained as well. We discuss smooth and piecewise smooth equations, inexact solution of subproblems, and globalization techniques. Attention is also paid to the LP-Newton method, because of its relations to the Levenberg-Marquardt method.
机构:
Lomonosov Moscow State Univ MSU, VMK Fac, OR Dept, Uchebniy Korpus 2, Moscow 119991, RussiaLomonosov Moscow State Univ MSU, VMK Fac, OR Dept, Uchebniy Korpus 2, Moscow 119991, Russia
Izmailov, Alexey F.
Uskov, Evgeniy I.
论文数: 0引用数: 0
h-index: 0
机构:
Derzhavin Tambov State Univ, Dept Math Phys & Comp Sci, TSU, Tambov, RussiaLomonosov Moscow State Univ MSU, VMK Fac, OR Dept, Uchebniy Korpus 2, Moscow 119991, Russia
Uskov, Evgeniy I.
Zhibai, Yan
论文数: 0引用数: 0
h-index: 0
机构:
Lomonosov Moscow State Univ MSU, VMK Fac, OR Dept, Uchebniy Korpus 2, Moscow 119991, RussiaLomonosov Moscow State Univ MSU, VMK Fac, OR Dept, Uchebniy Korpus 2, Moscow 119991, Russia