The Levenberg-Marquardt method: an overview of modern convergence theories and more

被引:8
|
作者
Fischer, Andreas [1 ]
Izmailov, Alexey F. [2 ,3 ]
Solodov, Mikhail V. [4 ]
机构
[1] Tech Univ Dresden, Fac Math, D-01062 Dresden, Germany
[2] Lomonosov Moscow State Univ MSU, VMK Fac, OR Dept, Uchebniy Korpus 2, Moscow 119991, Russia
[3] Derzhavin Tambov State Univ TSU, Int 33, Tambov 392000, Russia
[4] IMPA Inst Matemat Pura & Aplicada, Estr Dona Castorina 110, BR-22460320 Rio De Janeiro, RJ, Brazil
关键词
Nonlinear equation; Constrained equation; Piecewise smooth equation; Nonisolated solution; Local error bound; Gauss-Newton method; Levenberg-Marquardt method; LP-Newton method; Singular solution; LEAST-SQUARES FORMULATION; NASH EQUILIBRIUM PROBLEMS; NEWTON METHOD; NONLINEAR EQUATIONS; ALGORITHM; SYSTEMS; PARAMETER;
D O I
10.1007/s10589-024-00589-1
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
The Levenberg-Marquardt method is a fundamental regularization technique for the Newton method applied to nonlinear equations, possibly constrained, and possibly with singular or even nonisolated solutions. We review the literature on the subject, in particular relating to each other various convergence frameworks and results. In this process, the analysis is performed from a unified perspective, and some new results are obtained as well. We discuss smooth and piecewise smooth equations, inexact solution of subproblems, and globalization techniques. Attention is also paid to the LP-Newton method, because of its relations to the Levenberg-Marquardt method.
引用
收藏
页码:33 / 67
页数:35
相关论文
共 50 条
  • [1] Globalization of convergence of the constrained piecewise Levenberg-Marquardt method
    Izmailov, Alexey F.
    Uskov, Evgeniy I.
    Zhibai, Yan
    OPTIMIZATION METHODS & SOFTWARE, 2024,
  • [2] A Levenberg-Marquardt method with approximate projections
    Behling, R.
    Fischer, A.
    Herrich, M.
    Iusem, A.
    Ye, Y.
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2014, 59 (1-2) : 5 - 26
  • [3] Local convergence of the Levenberg-Marquardt method under Holder metric subregularity
    Ahookhosh, Masoud
    Aragon Artacho, Francisco J.
    Fleming, Ronan M. T.
    Vuong, Phan T.
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2019, 45 (5-6) : 2771 - 2806
  • [4] THE MODIFIED LEVENBERG-MARQUARDT METHOD FOR NONLINEAR EQUATIONS WITH CUBIC CONVERGENCE
    Fan, Jinyan
    MATHEMATICS OF COMPUTATION, 2012, 81 (277) : 447 - 466
  • [5] A unified local convergence analysis of inexact constrained Levenberg-Marquardt methods
    Behling, Roger
    Fischer, Andreas
    OPTIMIZATION LETTERS, 2012, 6 (05) : 927 - 940
  • [6] On convergence of the Levenberg-Marquardt method underlocal error bound
    Kadam, Rawaa Fadeal
    Al-Abrahemee, Khalid Mindeel Mohammed
    JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2022, 25 (05) : 1495 - 1508
  • [7] On the convergence properties of the Levenberg-Marquardt method
    Zhang, JL
    OPTIMIZATION, 2003, 52 (06) : 739 - 756
  • [8] Convergence analysis of the Levenberg-Marquardt method
    Luo, Xin-Long
    Liao, Li-Zhi
    Tam, Hon Wah
    OPTIMIZATION METHODS & SOFTWARE, 2007, 22 (04) : 659 - 678
  • [9] On the Convergence of Levenberg-Marquardt Method for Solving Nonlinear Systems
    Fang, Minglei
    Xu, Feng
    Zhu, Zhibin
    Jiang, Lihua
    Geng, Xianya
    BIO-INSPIRED COMPUTING - THEORIES AND APPLICATIONS, BIC-TA 2014, 2014, 472 : 117 - 122
  • [10] ON THE CONVERGENCE RATE OF THE INEXACT LEVENBERG-MARQUARDT METHOD
    Fan, Jinyan
    Pan, Jianyu
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2011, 7 (01) : 199 - 210