ON UNRAMIFIED GALOIS 2-GROUPS OVER Z2-EXTENSIONS OF SOME IMAGINARYBIQUADRATIC NUMBER FIELDS

被引:0
作者
Mouhib, A. [1 ]
Rouas, S. [1 ]
机构
[1] Sidi Mohammed Ben Abdellah Univ, Sci & Engn Lab, Polydisciplinary Fac Taza, Taza Gare PB 1223, Taza, Morocco
关键词
2-group rank; 2-class group; imaginary biquadratic number field; Iwasawa module;
D O I
10.1007/s10474-024-01425-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For an imaginary biquadratic number field K = Q(root-q, root d), where q > 3 is a prime congruent to 3 (mod 8), and d is an odd square-free integer which is not equal to q, let K(infinity )be the cyclotomic Z(2)-extension of K. For any integer n >= 0, we denote by K(n )the nth layer of K-infinity/K. We investigate the rank of the 2-class group of K-n, then we draw the list of all number fields K such that the Galois group of the maximal unramified pro-2-extension over their cyclotomic Z(2)-extension is metacyclic pro-2 group.
引用
收藏
页码:481 / 491
页数:11
相关论文
共 14 条
  • [1] Atsuta M, 2018, J THEOR NOMBR BORDX, V30, P1017
  • [2] BLACKBURN N, 1957, P CAMBRIDGE PHILOS S, V53, P19
  • [3] Dixon J. D., 1999, CAMBRIDGE STUDIES AD, V61
  • [4] IWASAWA INVARIANT MU-P VANISHES FOR ABELIAN NUMBER FIELDS
    FERRERO, B
    WASHINGTON, LC
    [J]. ANNALS OF MATHEMATICS, 1979, 109 (02) : 377 - 395
  • [5] GRAS G, 1973, ANN I FOURIER, V23, P1
  • [6] Ishida M., 1976, LECT NOTES MATH
  • [7] Iwasawa K., 1959, Bull. Amer. Math. Soc, V65, P183, DOI [10.1090/S0002-9904-1959-10317-7, DOI 10.1090/S0002-9904-1959-10317-7]
  • [8] CYCLOTOMIC Z2-EXTENSIONS OF J-FIELDS
    KIDA, Y
    [J]. JOURNAL OF NUMBER THEORY, 1982, 14 (03) : 340 - 352
  • [9] Kida Y., 1979, TOHOKU MATH J, V31, P91
  • [10] LEMMERMEYER F, 1995, ACTA ARITH, V72, P347