Graph neural network coarse-grain force field for the molecular crystal RDX

被引:1
作者
Lee, Brian H. [1 ,2 ]
Larentzos, James P. [3 ]
Brennan, John K. [3 ]
Strachan, Alejandro [1 ,2 ]
机构
[1] Purdue Univ, Sch Mat Engn, Lafayette, IN 47907 USA
[2] Purdue Univ, Birck Nanotechnol Ctr, Lafayette, IN 47907 USA
[3] Army Res Lab, US Army Combat Capabil Dev Command DEVCOM, Aberdeen Proving Ground, MD USA
关键词
DYNAMICS; SIMULATIONS; MODELS; PREDICTION; PRESSURE; POLYMERS;
D O I
10.1038/s41524-024-01407-2
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Condense phase molecular systems organize in wide range of distinct molecular configurations, including amorphous melt and glass as well as crystals often exhibiting polymorphism, that originate from their intricate intra- and intermolecular forces. While accurate coarse-grain (CG) models for these materials are critical to understand phenomena beyond the reach of all-atom simulations, current models cannot capture the diversity of molecular structures. We introduce a generally applicable approach to develop CG force fields for molecular crystals combining graph neural networks (GNN) and data from an all-atom simulations and apply it to the high-energy density material RDX. We address the challenge of expanding the training data with relevant configurations via an iterative procedure that performs CG molecular dynamics of processes of interest and reconstructs the atomistic configurations using a pre-trained neural network decoder. The multi-site CG model uses a GNN architecture constructed to satisfy translational invariance and rotational covariance for forces. The resulting model captures both crystalline and amorphous states for a wide range of temperatures and densities.
引用
收藏
页数:11
相关论文
共 76 条
  • [41] Pressure-cooking of explosives-the crystal structure of ε-RDX as determined by X-ray and neutron diffraction
    Millar, David I. A.
    Oswald, Iain D. H.
    Barry, Christopher
    Francis, Duncan J.
    Marshall, William G.
    Pulham, Colin R.
    Cumming, Adam S.
    [J]. CHEMICAL COMMUNICATIONS, 2010, 46 (31) : 5662 - 5664
  • [42] The crystal structure of β-RDX-an elusive form of an explosive revealed
    Millar, David I. A.
    Oswald, Iain D. H.
    Francis, Duncan J.
    Marshall, William G.
    Pulham, Colin R.
    Cumming, Adam S.
    [J]. CHEMICAL COMMUNICATIONS, 2009, (05) : 562 - 564
  • [43] The MARTINI coarse-grained force field: Extension to proteins
    Monticelli, Luca
    Kandasamy, Senthil K.
    Periole, Xavier
    Larson, Ronald G.
    Tieleman, D. Peter
    Marrink, Siewert-Jan
    [J]. JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2008, 4 (05) : 819 - 834
  • [44] A coarse-grain force field for RDX: Density dependent and energy conserving
    Moore, Joshua D.
    Barnes, Brian C.
    Izvekov, Sergei
    Lisal, Martin
    Sellers, Michael S.
    Taylor, DeCarlos E.
    Brennan, John K.
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2016, 144 (10)
  • [45] Simulations of High-Pressure Phases in RDX
    Munday, Lynn B.
    Chung, Peter W.
    Rice, Betsy M.
    Solares, Santiago D.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2011, 115 (15) : 4378 - 4386
  • [46] Learning local equivariant representations for large-scale atomistic dynamics
    Musaelian, Albert
    Batzner, Simon
    Johansson, Anders
    Sun, Lixin
    Owen, Cameron J.
    Kornbluth, Mordechai
    Kozinsky, Boris
    [J]. NATURE COMMUNICATIONS, 2023, 14 (01)
  • [47] Coarse grain models and the computer simulation of soft materials
    Nielsen, SO
    Lopez, CF
    Srinivas, G
    Klein, ML
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2004, 16 (15) : R481 - R512
  • [48] The multiscale coarse-graining method. I. A rigorous bridge between atomistic and coarse-grained models
    Noid, W. G.
    Chu, Jhih-Wei
    Ayton, Gary S.
    Krishna, Vinod
    Izvekov, Sergei
    Voth, Gregory A.
    Das, Avisek
    Andersen, Hans C.
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2008, 128 (24)
  • [49] Discovering Crystal Forms of the Novel Molecular Semiconductor OEG-BTBT
    Pandey, Priya
    Demitri, Nicola
    Gigli, Lara
    James, Ann Maria
    Devaux, Felix
    Geerts, Yves Henri
    Modena, Enrico
    Maini, Lucia
    [J]. CRYSTAL GROWTH & DESIGN, 2022, 22 (03) : 1680 - 1690
  • [50] Accurate and scalable graph neural network force field and molecular dynamics with direct force architecture
    Park, Cheol Woo
    Kornbluth, Mordechai
    Vandermause, Jonathan
    Wolverton, Chris
    Kozinsky, Boris
    Mailoa, Jonathan P.
    [J]. NPJ COMPUTATIONAL MATERIALS, 2021, 7 (01)