Graph neural network coarse-grain force field for the molecular crystal RDX

被引:1
作者
Lee, Brian H. [1 ,2 ]
Larentzos, James P. [3 ]
Brennan, John K. [3 ]
Strachan, Alejandro [1 ,2 ]
机构
[1] Purdue Univ, Sch Mat Engn, Lafayette, IN 47907 USA
[2] Purdue Univ, Birck Nanotechnol Ctr, Lafayette, IN 47907 USA
[3] Army Res Lab, US Army Combat Capabil Dev Command DEVCOM, Aberdeen Proving Ground, MD USA
关键词
DYNAMICS; SIMULATIONS; MODELS; PREDICTION; PRESSURE; POLYMERS;
D O I
10.1038/s41524-024-01407-2
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Condense phase molecular systems organize in wide range of distinct molecular configurations, including amorphous melt and glass as well as crystals often exhibiting polymorphism, that originate from their intricate intra- and intermolecular forces. While accurate coarse-grain (CG) models for these materials are critical to understand phenomena beyond the reach of all-atom simulations, current models cannot capture the diversity of molecular structures. We introduce a generally applicable approach to develop CG force fields for molecular crystals combining graph neural networks (GNN) and data from an all-atom simulations and apply it to the high-energy density material RDX. We address the challenge of expanding the training data with relevant configurations via an iterative procedure that performs CG molecular dynamics of processes of interest and reconstructs the atomistic configurations using a pre-trained neural network decoder. The multi-site CG model uses a GNN architecture constructed to satisfy translational invariance and rotational covariance for forces. The resulting model captures both crystalline and amorphous states for a wide range of temperatures and densities.
引用
收藏
页数:11
相关论文
共 76 条
  • [21] The Cambridge Structural Database
    Groom, Colin R.
    Bruno, Ian J.
    Lightfoot, Matthew P.
    Ward, Suzanna C.
    [J]. ACTA CRYSTALLOGRAPHICA SECTION B-STRUCTURAL SCIENCE CRYSTAL ENGINEERING AND MATERIALS, 2016, 72 : 171 - 179
  • [22] MULTILAYER FEEDFORWARD NETWORKS ARE UNIVERSAL APPROXIMATORS
    HORNIK, K
    STINCHCOMBE, M
    WHITE, H
    [J]. NEURAL NETWORKS, 1989, 2 (05) : 359 - 366
  • [23] Hu W., 2020, INT C LEARN REPR ICL
  • [24] Coarse graining molecular dynamics with graph neural networks
    Husic, Brooke E.
    Charron, Nicholas E.
    Lemm, Dominik
    Wang, Jiang
    Perez, Adria
    Majewski, Maciej
    Kramer, Andreas
    Chen, Yaoyi
    Olsson, Simon
    de Fabritiis, Gianni
    Noe, Frank
    Clementi, Cecilia
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2020, 153 (19)
  • [25] A multiscale coarse-graining method for biomolecular systems
    Izvekov, S
    Voth, GA
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (07) : 2469 - 2473
  • [26] Bottom-up coarse-grain modeling of nanoscale shear bands in shocked α-RDX
    Izvekov, Sergei
    Larentzos, James P.
    Brennan, John K.
    Rice, Betsy M.
    [J]. JOURNAL OF MATERIALS SCIENCE, 2022, 57 (23) : 10627 - 10648
  • [27] Bottom-up coarse-grain modeling of plasticity and nanoscale shear bands in α-RDX
    Izvekov, Sergei
    Rice, Betsy M.
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2021, 155 (06)
  • [28] Particle-based multiscale coarse graining with density-dependent potentials: Application to molecular crystals (hexahydro-1,3,5-trinitro-s-triazine)
    Izvekov, Sergei
    Chung, Peter W.
    Rice, Betsy M.
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2011, 135 (04)
  • [29] A coarse-grain reactive model of RDX: Molecular resolution at the μm scale
    Lee, Brian H.
    Sakano, Michael N.
    Larentzos, James P.
    Brennan, John K.
    Strachan, Alejandro
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2023, 158 (02)
  • [30] Systematic Builder for All-Atom Simulations of Plastically Bonded Explosives
    Li, Chunyu
    Hamilton, Brenden W.
    Shen, Tongtong
    Alzate, Lorena
    Strachan, Alejandro
    [J]. PROPELLANTS EXPLOSIVES PYROTECHNICS, 2022, 47 (08)