The polyunsaturated fatty acid docosahexaenoic affects mitochondrial function in prostate cancer cells

被引:0
|
作者
Tamarindo, Guilherme Henrique [1 ,2 ]
Ribeiro, Caroline Fidalgo [3 ]
Silva, Alana Della Torre [4 ]
Castro, Alex [2 ]
Caruso, Icaro Putinhon [5 ,6 ,7 ]
Souza, Fatima Pereira [5 ]
Taboga, Sebastiao Roberto [4 ]
Loda, Massimo [3 ]
Goes, Rejane Maira [4 ]
机构
[1] Univ Estadual Campinas, Inst Biol, Campinas, SP, Brazil
[2] Brazilian Ctr Res Energy & Mat CNPEM, Brazilian Biosci Natl Lab LNBio, Campinas, SP, Brazil
[3] Weill Cornell Med, Dept Pathol & Lab Med, New York, NY USA
[4] UNESP, IBILCE, Dept Biol Sci, Rua Cristovao Colombo,2265 Jardim Nazareth, BR-15054000 Sao Jose Do Rio Preto, SP, Brazil
[5] Sao Paulo State Univ, Inst Biosci Humanities & Exact Sci, Dept Biophys, Sao Jose Do Rio Preto, SP, Brazil
[6] Univ Fed Rio de Janeiro, Inst Med Biochem, Rio De Janeiro, Brazil
[7] Univ Fed Rio de Janeiro, Natl Ctr Struct Biol & Bioimaging CENABIO, Natl Ctr Nucl Magnet Resonance Macromol, Rio De Janeiro, Brazil
基金
巴西圣保罗研究基金会;
关键词
Prostate cancer cells; Omega-3 polyunsaturated fatty acids; Docosahexaenoic acid; Mitochondria; Lipid metabolism; CARDIOLIPIN; RECEPTOR; OMEGA-3-FATTY-ACIDS; MYOINOSITOL; RESISTANCE; CARCINOMA; APOPTOSIS; TRANSPORT; SYNTHASE; GROWTH;
D O I
10.1186/s40170-024-00348-0
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
BackgroundProstate cancer (PCa) shows a rewired metabolism featuring increased fatty acid uptake and synthesis via de novo lipogenesis, both sharply related to mitochondrial physiology. The docosahexaenoic acid (DHA) is an omega-3 polyunsaturated fatty acid (PUFA) that exerts its antitumoral properties via different mechanisms, but its specific action on mitochondria in PCa is not clear. Therefore, we investigated whether the DHA modulates mitochondrial function in PCa cell lines.MethodsHere, we evaluated mitochondrial function of non-malignant PNT1A and the castration-resistant (CRPC) prostate 22Rv1 and PC3 cell lines in response to DHA incubation. For this purpose, we used Seahorse extracellular flux assay to assess mitochondria function, [14C]-glucose to evaluate its oxidation as well as its contribution to fatty acid synthesis, 1H-NMR for metabolite profile determination, MitoSOX for superoxide anion production, JC-1 for mitochondrial membrane polarization, mass spectrometry for determination of phosphatidylglycerol levels and composition, staining with MitoTracker dye to assess mitochondrial morphology under super-resolution in addition to Transmission Electron Microscopy, In-Cell ELISA for COX-I and SDH-A protein expression and flow cytometry (Annexin V and 7-AAD) for cell death estimation.ResultsIn all cell lines DHA decreased basal respiratory activity, ATP production, and the spare capacity in mitochondria. Also, the omega-3 induced mitochondrial hyperpolarization, ROS overproduction and changes in membrane phosphatidylglycerol composition. In PNT1A, DHA led to mitochondrial fragmentation and it increased glycolysis while in cancer cells it stimulated glucose oxidation, but decreased de novo lipogenesis specifically in 22Rv1, indicating a metabolic shift. In all cell lines, DHA modulated several metabolites related to energy metabolism and it was incorporated in phosphatidylglycerol, a precursor of cardiolipin, increasing the unsaturation index in the mitochondrial membrane. Accordingly, DHA triggered cell death mainly in PNT1A and 22Rv1.ConclusionIn conclusion, mitochondrial metabolism is significantly affected by the PUFA supplementation to the point that cells are not able to proliferate or survive under DHA-enriched condition. Moreover, combination of DHA supplementation with inhibition of metabolism-related pathways, such as de novo lipogenesis, may be synergistic in castration-resistant prostate cancer.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Effects of polyunsaturated fatty acids on the growth of gastric cancer cells in vitro
    Dai, Jinfeng
    Shen, Junhui
    Pan, Wensheng
    Shen, Shengrong
    Das, Undurti N.
    LIPIDS IN HEALTH AND DISEASE, 2013, 12
  • [22] Docosahexaenoic acid in red blood cells of term infants receiving two levels of long-chain polyunsaturated fatty acids
    Hoffman, DR
    Wheaton, DKH
    James, KJ
    Tuazon, M
    Diersen-Schade, DA
    Harris, CL
    Stolz, S
    Berseth, CL
    JOURNAL OF PEDIATRIC GASTROENTEROLOGY AND NUTRITION, 2006, 42 (03) : 287 - 292
  • [23] Docosahexaenoic acid sensitizes colon cancer cells to sulindac sulfide-induced apoptosis
    Lim, Soo-Jeong
    Lee, Eunmyong
    Lee, Eun-Hye
    Kim, Soo-Yeon
    Cha, Jun Hyung
    Choi, Hwanho
    Park, Wanseo
    Choi, Hyeon Kyeom
    Ko, Seong-Hee
    Kim, So Hee
    ONCOLOGY REPORTS, 2012, 27 (06) : 2023 - 2030
  • [24] Update on lipids and mitochondrial function: impact of dietary n-3 polyunsaturated fatty acids
    Stanley, William C.
    Khairallah, Ramzi J.
    Dabkowski, Erinne R.
    CURRENT OPINION IN CLINICAL NUTRITION AND METABOLIC CARE, 2012, 15 (02) : 122 - 126
  • [25] The Ω-3 fatty acid docosahexaenoic acid selectively induces apoptosis in tumor-derived cells and suppress tumor growth in gastric cancer
    Ortega, Lorena
    Lobos-Gonzalez, Lorena
    Reyna-Jeldes, Mauricio
    Cerda, Daniela
    De la Fuente-Ortega, Erwin
    Castro, Patricio
    Bernal, Giuliano
    Coddou, Claudio
    EUROPEAN JOURNAL OF PHARMACOLOGY, 2021, 896
  • [26] Inhibition of astroglial glutamate transport by polyunsaturated fatty acids: Evidence for a signalling role of docosahexaenoic acid
    Grintal, Barbara
    Champeil-Potokar, Gaelle
    Lavialle, Monique
    Vancassel, Sylvie
    Breton, Sylvie
    Denis, Isabelle
    NEUROCHEMISTRY INTERNATIONAL, 2009, 54 (08) : 535 - 543
  • [27] Docosahexaenoic acid synthesis from alpha-linolenic acid is inhibited by diets high in polyunsaturated fatty acids
    Gibson, R. A.
    Neumann, M. A.
    Lien, E. L.
    Boyd, K. A.
    Tu, W. C.
    PROSTAGLANDINS LEUKOTRIENES AND ESSENTIAL FATTY ACIDS, 2013, 88 (01): : 139 - 146
  • [28] Fatty acid synthase (FASN) regulates the mitochondrial priming of cancer cells
    Schroeder, Barbara
    Vander Steen, Travis
    Espinoza, Ingrid
    Venkatapoorna, Chandra M. Kurapaty
    Hu, Zeng
    Silva, Fernando Martin
    Regan, Kevin
    Cuyas, Elisabet
    Meng, X. Wei
    Verdura, Sara
    Arbusa, Aina
    Schneider, Paula A.
    Flatten, Karen S.
    Kemble, George
    Montero, Joan
    Kaufmann, Scott H.
    Menendez, Javier A.
    Lupu, Ruth
    CELL DEATH & DISEASE, 2021, 12 (11)
  • [29] Fatty Acid Synthesis in Prostate Cancer: Vulnerability or Epiphenomenon?
    Sena, Laura A.
    Denmeade, Samuel R.
    CANCER RESEARCH, 2021, 81 (17) : 4385 - 4393
  • [30] The roles of AIF and Endo G in the apoptotic effects of benzyl isothiocyanate on DU 145 human prostate cancer cells via the mitochondrial signaling pathway
    Liu, Kuo-Ching
    Huang, Ya-Ting
    Wu, Ping-Ping
    Ji, Bin-Chuan
    Yang, Jai-Sing
    Yang, Jiun-Long
    Chiu, Tsan-Hung
    Chueh, Fu-Shin
    Chung, Jing-Gung
    INTERNATIONAL JOURNAL OF ONCOLOGY, 2011, 38 (03) : 787 - 796