How Rossby wave breaking modulates the water cycle in the North Atlantic trade wind region

被引:23
|
作者
Aemisegger, Franziska [1 ]
Vogel, Raphaela [2 ]
Graf, Pascal [1 ]
Dahinden, Fabienne [1 ]
Villiger, Leonie [1 ]
Jansen, Friedhelm [3 ]
Bony, Sandrine [2 ]
Stevens, Bjorn [3 ]
Wernli, Heini [1 ]
机构
[1] Swiss Fed Inst Technol, Inst Atmospher & Climate Sci, CH-8092 Zurich, Switzerland
[2] Sorbonne Univ, LMD IPSL, CNRS, Paris, France
[3] Max Planck Inst Meteorol, Hamburg, Germany
来源
WEATHER AND CLIMATE DYNAMICS | 2021年 / 2卷 / 01期
关键词
VAPOR ISOTOPIC COMPOSITION; LAGRANGIAN-BASED ANALYSIS; EXTRATROPICAL CYCLONES; DEUTERIUM EXCESS; BOUNDARY-LAYER; DRY-AIR; CLOUDS; CLIMATOLOGY; INTRUSIONS; EUREC(4)A;
D O I
10.5194/wcd-2-281-2021
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
The interaction between low-level tropical clouds and the large-scale circulation is a key feedback element in our climate system, but our understanding of it is still fragmentary. In this paper, the role of upper-level extratropical dynamics for the development of contrasting shallow cumulus cloud patterns in the western North Atlantic trade wind region is investigated. Stable water isotopes are used as tracers for the origin of air parcels arriving in the sub-cloud layer above Barbados, measured continuously in water vapour at the Barbados Cloud Observatory during a 24 d measurement campaign (isoTrades, 25 January to 17 February 2018). These data are combined with a detailed air parcel back-trajectory analysis using hourly ERA5 reanalyses of the European Centre for Medium-Range Weather Forecasts. A climatological investigation of the 10 d air parcel history for January and February in the recent decade shows that 55 % of the air parcels arriving in the sub-cloud layer have spent at least 1 d in the extratropics (north of 35 (degrees) N) before arriving in the eastern Caribbean at about 13 N-degrees . In 2018, this share of air parcels with extratropical origin was anomalously large, with 88 %. In two detailed case studies during the campaign, two flow regimes with distinct isotope signatures transporting extratropical air into the Caribbean are investigated. In both regimes, the air parcels descend from the lower part of the midlatitude jet stream towards the Equator, at the eastern edge of subtropical anticyclones, in the context of Rossby wave breaking events. The zonal location of the wave breaking and the surface anticyclone determine the dominant transport regime. The first regime represents the "typical" trade wind situation, with easterly winds bringing moist air from the eastern North Atlantic into the Caribbean, in a deep layer from the surface up to similar to 600 hPa. The moisture source of the sub-cloud layer water vapour is located on average 2000 km upstream of Barbados. In this regime, Rossby wave breaking and the descent of air from the extratropics occur in the eastern North Atlantic, at about 33 (degrees) W. The second regime is associated with air parcels descending slantwise by on average 300 hPa (6 d)( - 1) directly from the north-east, i.e. at about 50(degrees)W. These originally dry airstreams experience a more rapid moistening than typical trade wind air parcels when interacting with the subtropical oceanic boundary layer, with moisture sources being located on average 1350 km upstream to the north-east of Barbados. The descent of dry air in the second regime can be steered towards the Caribbean by the interplay of a persistent upper-level cut-off low over the central North Atlantic (about 45 (degrees) W) and the associated surface cyclone underneath. The zonal location of Rossby wave breaking and, consequently, the pathway of extratropical air towards the Caribbean are shown to be relevant for the sub-cloud layer humidity and shallow-cumulus-cloud-cover properties of the North Atlantic winter trades. Overall, this study highlights the importance of extratropical dynamical processes for the tropical water cycle and reveals that these processes lead to a substantial modulation of stable water isotope signals in the near-surface humidity.
引用
收藏
页码:281 / 309
页数:29
相关论文
共 50 条
  • [1] On double Rossby wave breaking in the North Atlantic
    Messori, Gabriele
    Caballero, Rodrigo
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2015, 120 (21) : 11129 - 11150
  • [2] How Rossby wave breaking over the Pacific forces the North Atlantic Oscillation
    Strong, Courtenay
    Magnusdottir, Gudrun
    GEOPHYSICAL RESEARCH LETTERS, 2008, 35 (10)
  • [3] A new Rossby wave-breaking interpretation of the North Atlantic Oscillation
    Woollings, Tim
    Hoskins, Brian
    Blackburn, Mike
    Berrisford, Paul
    JOURNAL OF THE ATMOSPHERIC SCIENCES, 2008, 65 (02) : 609 - 626
  • [4] North Atlantic Extratropical Rossby Wave Breaking during the Warm Season: Wave Life Cycle and Role of Diabatic Heating
    Zhang, Gan
    Wang, Zhuo
    MONTHLY WEATHER REVIEW, 2018, 146 (03) : 695 - 712
  • [5] The Pacific decadal oscillation as a modulator of summertime North Atlantic Rossby wave breaking
    Breanna L. Zavadoff
    Ben P. Kirtman
    Climate Dynamics, 2021, 56 : 207 - 225
  • [6] The Pacific decadal oscillation as a modulator of summertime North Atlantic Rossby wave breaking
    Zavadoff, Breanna L.
    Kirtman, Ben P.
    CLIMATE DYNAMICS, 2021, 56 (1-2) : 207 - 225
  • [7] North Atlantic Rossby Wave Breaking during the Hurricane Season: Association with Tropical and Extratropical Variability
    Zhang, Gan
    Wang, Zhuo
    JOURNAL OF CLIMATE, 2019, 32 (13) : 3777 - 3801
  • [8] Subseasonal Variability of Rossby Wave Breaking and Impacts on Tropical Cyclones during the North Atlantic Warm Season
    Li, Weiwei
    Wang, Zhuo
    Zhang, Gan
    Peng, Melinda S.
    Benjamin, Stanley G.
    Zhao, Ming
    JOURNAL OF CLIMATE, 2018, 31 (23) : 9679 - 9695
  • [9] The Role of Rossby Wave Breaking in Shaping the Equilibrium Atmospheric Circulation Response to North Atlantic Boundary Forcing
    Strong, Courtenay
    Magnusdottir, Gudrun
    JOURNAL OF CLIMATE, 2010, 23 (06) : 1269 - 1276
  • [10] North Atlantic Summertime Anticyclonic Rossby Wave Breaking: Climatology, Impacts, and Connections to the Pacific Decadal Oscillation
    Zavadoff, Breanna L.
    Kirtman, Ben P.
    JOURNAL OF CLIMATE, 2019, 32 (02) : 485 - 500