Hyperbolicity and bounded-valued cohomology

被引:0
|
作者
Petrosyan, Nansen [1 ]
Vankov, Vladimir [2 ]
机构
[1] Univ Southampton, Sch Math, Southampton SO17 1BJ, England
[2] Univ Bristol, Sch Math, Bristol BS8 1UG, England
基金
英国工程与自然科学研究理事会;
关键词
ISOPERIMETRIC FUNCTIONS; SUBGROUPS; DIMENSION; DUALITY;
D O I
10.1007/s00208-024-02871-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We generalise a theorem of Gersten on surjectivity of the restriction map in & ell; infinity \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell <^>{\infty }$$\end{document} -cohomology of groups. This leads to applications on subgroups of hyperbolic groups, quasi-isometric distinction of finitely generated groups and & ell; infinity \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell <^>{\infty }$$\end{document} -cohomology calculations for some well-known classes of groups. Along the way, we obtain hyperbolicity criteria for groups of type F P 2 ( Q ) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$FP_2({{\mathbb {Q}}})$$\end{document} and for those satisfying a rational homological linear isoperimetric inequality, answering a question of Arora and Mart & iacute;nez-Pedroza.
引用
收藏
页码:4701 / 4727
页数:27
相关论文
共 50 条