Functional Formulation of Quantum Theory of a Scalar Field in a Metric with Lorentzian and Euclidean Signatures

被引:1
作者
Haba, Zbigniew [1 ]
机构
[1] Univ Wroclaw, Inst Theoret Phys, Plac Maxa Borna 9, PL-50204 Wroclaw, Poland
关键词
functional integration; quantum field theory; stochastic processes; expanding universe; quantum gravity; field correlation functions; SITTER SPACE; WAVE-FUNCTION; TIME; PROPAGATOR; MECHANICS; UNIVERSE; TOPOLOGY; EQUATION; STATES;
D O I
10.3390/e26040329
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the Schr & ouml;dinger equation in quantum field theory (QFT) in its functional formulation. In this approach, quantum correlation functions can be expressed as classical expectation values over (complex) stochastic processes. We obtain a stochastic representation of the Schr & ouml;dinger time evolution on Wentzel-Kramers-Brillouin (WKB) states by means of the Wiener integral. We discuss QFT in a flat expanding metric and in de Sitter space-time. We calculate the evolution kernel in an expanding flat metric in the real-time formulation. We discuss a field interaction in pseudoRiemannian and Riemannian metrics showing that an inversion of the signature leads to some substantial simplifications of the singularity problems in QFT.
引用
收藏
页数:49
相关论文
共 86 条
[1]   Feynman path integrals for the time dependent quartic oscillator [J].
Albeverio, S ;
Mazzucchi, S .
COMPTES RENDUS MATHEMATIQUE, 2005, 341 (10) :647-650
[2]   DIRICHLET FORMS AND DIFFUSION PROCESSES ON RIGGED HILBERT SPACES [J].
ALBEVERIO, S ;
HOEGHKROHN, R .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1977, 40 (01) :1-57
[3]  
Albeverio S., 1976, Mathematical Theory of Feynman Path Integrals, DOI 10.1007/BFb0079827
[4]   QUANTUM-MECHANICS OF THE INVERTED OSCILLATOR POTENTIAL [J].
BARTON, G .
ANNALS OF PHYSICS, 1986, 166 (02) :322-363
[5]   Introducing the Dirac-Milne universe [J].
Benoit-Levy, A. ;
Chardin, G. .
ASTRONOMY & ASTROPHYSICS, 2012, 537
[6]   HAMILTON-JACOBI AND SCHRODINGER THEORY IN THEORIES WITH FIRST-CLASS HAMILTONIAN CONSTRAINTS [J].
BERGMANN, PG .
PHYSICAL REVIEW, 1966, 144 (04) :1078-&
[7]   Smoothness of time functions and the metric splitting of globally hyperbolic spacetimes [J].
Bernal, AN ;
Sánchez, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2005, 257 (01) :43-50
[8]  
Birrell N.D., 1982, Cambridge Monographs on Mathematical Physics, DOI DOI 10.1017/CBO9780511622632
[9]   Some implications of signature-change in cosmological models of loop quantum gravity [J].
Bojowald, Martin ;
Mielczarek, Jakub .
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2015, (08)
[10]   CPT-Symmetric Universe [J].
Boyle, Latham ;
Finn, Kieran ;
Turok, Neil .
PHYSICAL REVIEW LETTERS, 2018, 121 (25)