Frequency Modulation Aggregation for Federated Learning

被引:0
|
作者
Martinez-Gost, Marc [1 ,2 ]
Perez-Neira, Ana [1 ,2 ,3 ]
Lagunas, Miguel Angel [2 ]
机构
[1] Ctr Tecnol Telecomunicac Catalunya, Barcelona, Spain
[2] Univ Politecn Cataluna, Dept Signal Theory & Commun, Barcelona, Spain
[3] ICREA Acad, Barcelona, Spain
来源
IEEE CONFERENCE ON GLOBAL COMMUNICATIONS, GLOBECOM | 2023年
关键词
Frequency modulation; Federated Learning; AirComp; TBMA;
D O I
10.1109/GLOBECOM54140.2023.10437413
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Federated edge learning (FEEL) is a framework for training models in a distributed fashion using edge devices and a server that coordinates the learning process. In FEEL, edge devices periodically transmit model parameters to the server, which aggregates them to generate a global model. To reduce the burden of transmitting high-dimensional data by many edge devices, a broadband analog transmission scheme has been proposed. The devices transmit the parameters simultaneously using a linear analog modulation, which are aggregated by the superposition nature of the wireless medium. However, linear analog modulations incur in an excessive power consumption for edge devices and are not suitable for current digital wireless systems. To overcome this issue, in this paper we propose a digital frequency broadband aggregation. The scheme integrates a Multiple Frequency Shift Keying (MFSK) at the transmitters and a type-based multiple access (TBMA) at the receiver. Using concurrent transmission, the server can recover the type (i.e., a histogram) of the transmitted parameters and compute any aggregation function to generate a shared global model. We provide an extensive analysis of the communication scheme in an additive white Gaussian noise (AWGN) channel and compare it with linear analog modulations. Our experimental results show that the proposed scheme achieves no drop in performance up to -10 dB and outperforms the analog counterparts, while requiring 14 dB less in peak-to-average power ratio (PAPR) than linear analog modulations.
引用
收藏
页码:1878 / 1883
页数:6
相关论文
共 50 条
  • [41] Efficient Wireless Federated Learning With Partial Model Aggregation
    Chen, Zhixiong
    Yi, Wenqiang
    Shin, Hyundong
    Nallanathan, Arumugam
    Li, Geoffrey Ye
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2024, 72 (10) : 6271 - 6286
  • [42] Robust Secure Aggregation with Lightweight Verification for Federated Learning
    Huang, Chao
    Yao, Yanqing
    Zhang, Xiaojun
    Teng, Da
    Wang, Yingdong
    Zhou, Lei
    2022 IEEE INTERNATIONAL CONFERENCE ON TRUST, SECURITY AND PRIVACY IN COMPUTING AND COMMUNICATIONS, TRUSTCOM, 2022, : 582 - 589
  • [43] Aggregation Strategy with Gradient Projection for Federated Learning in Diagnosis
    Lin, Huiyan
    Gao, Yunshu
    Li, Heng
    Zhang, Xiaotian
    Yu, Xiangyang
    Chen, Jianwen
    Liu, Jiang
    ADVANCED INTELLIGENT COMPUTING IN BIOINFORMATICS, PT I, ICIC 2024, 2024, 14881 : 207 - 218
  • [44] FedSim: Similarity guided model aggregation for Federated Learning
    Palihawadana, Chamath
    Wiratunga, Nirmalie
    Wijekoon, Anjana
    Kalutarage, Harsha
    NEUROCOMPUTING, 2022, 483 : 432 - 445
  • [45] RTGA: Robust ternary gradients aggregation for federated learning
    Yang, Chengang
    Xiao, Danyang
    Cao, Bokai
    Wu, Weigang
    INFORMATION SCIENCES, 2022, 616 : 427 - 443
  • [46] FedAcc and FedAccSize: Aggregation Methods for Federated Learning Applications
    Bejenar, Iuliana
    Ferariu, Lavinia
    Pascal, Carlos
    Caruntu, Constantin F.
    2023 31ST MEDITERRANEAN CONFERENCE ON CONTROL AND AUTOMATION, MED, 2023, : 593 - 598
  • [47] Efficient Parameter Aggregation in Federated Learning with Hybrid Convergecast
    Tao, Yangyang
    Zhou, Junxiu
    Yu, Shucheng
    2021 IEEE 18TH ANNUAL CONSUMER COMMUNICATIONS & NETWORKING CONFERENCE (CCNC), 2021,
  • [48] Improved Privacy-Preserving Aggregation for Federated Learning
    Li, Yu
    Han, Yiliang
    Zhou, Tanping
    Xie, Huiyu
    Wu, Xuguang
    Song, Chaoyue
    2024 9TH INTERNATIONAL CONFERENCE ON COMPUTER AND COMMUNICATION SYSTEMS, ICCCS 2024, 2024, : 272 - 276
  • [49] Personalized Federated Learning with Contextual Modulation and Meta-Learning
    Vettoruzzo, Anna
    Bouguelia, Mohamed-Rafik
    Rognvaldsson, Thorsteinn
    PROCEEDINGS OF THE 2024 SIAM INTERNATIONAL CONFERENCE ON DATA MINING, SDM, 2024, : 842 - 850
  • [50] SVFLC: Secure and Verifiable Federated Learning With Chain Aggregation
    Li, Ning
    Zhou, Ming
    Yu, Haiyang
    Chen, Yuwen
    Yang, Zhen
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (08): : 13125 - 13136