Applications of artificial intelligence-powered prenatal diagnosis for congenital heart disease

被引:2
作者
Liu, Xiangyu [1 ,2 ]
Zhang, Yingying [1 ,2 ]
Zhu, Haogang [2 ,3 ,4 ]
Jia, Bosen [5 ]
Wang, Jingyi [6 ,7 ]
He, Yihua [6 ,7 ]
Zhang, Hongjia [2 ,8 ]
机构
[1] Beihang Univ, Sch Biol Sci & Med Engn, Beijing, Peoples R China
[2] Beihang Univ, Int Innovat Inst, Key Lab Data Sci & Intelligent Comp, Hangzhou 311115, Peoples R China
[3] Beihang Univ, State Key Lab Software Dev Environm, Beijing, Peoples R China
[4] Beihang Univ, Sch Comp Sci & Engn, Beijing, Peoples R China
[5] Victoria Univ Wellington, Sch Biol Sci, Wellington, New Zealand
[6] Capital Med Univ, Echocardiog Med Ctr, Beijing Anzhen Hosp, Beijing, Peoples R China
[7] Beijing Anzhen Hosp, Maternal Fetal Med Ctr Fetal Heart Dis, Beijing, Peoples R China
[8] Beijing Lab Cardiovasc Precis Med, Beijing, Peoples R China
关键词
congenital heart disease; artificial intelligence; prenatal diagnosis; fetal echocardiography; deep learning; CHROMOSOMAL-ABNORMALITIES; MOTION CORRECTION; NEURAL-NETWORK; UNITED-STATES; RISK-FACTORS; DEFECTS; SEGMENTATION; ULTRASOUND; MRI; LOCALIZATION;
D O I
10.3389/fcvm.2024.1345761
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Artificial intelligence (AI) has made significant progress in the medical field in the last decade. The AI-powered analysis methods of medical images and clinical records can now match the abilities of clinical physicians. Due to the challenges posed by the unique group of fetuses and the dynamic organ of the heart, research into the application of AI in the prenatal diagnosis of congenital heart disease (CHD) is particularly active. In this review, we discuss the clinical questions and research methods involved in using AI to address prenatal diagnosis of CHD, including imaging, genetic diagnosis, and risk prediction. Representative examples are provided for each method discussed. Finally, we discuss the current limitations of AI in prenatal diagnosis of CHD, namely Volatility, Insufficiency and Independence (VII), and propose possible solutions.
引用
收藏
页数:7
相关论文
共 56 条
[1]   Prenatal diagnosis of nonsyndromic congenital heart defects [J].
Ailes, Elizabeth C. ;
Gilboa, Suzanne M. ;
Riehle-Colarusso, Tiffany ;
Johnson, Candice Y. ;
Hobbs, Charlotte A. ;
Correa, Adolfo ;
Honein, Margaret A. .
PRENATAL DIAGNOSIS, 2014, 34 (03) :214-222
[2]   An ensemble of neural networks provides expert-level prenatal detection of complex congenital heart disease [J].
Arnaout, Rima ;
Curran, Lara ;
Zhao, Yili ;
Levine, Jami C. ;
Chinn, Erin ;
Moon-Grady, Anita J. .
NATURE MEDICINE, 2021, 27 (05) :882-+
[3]   Survival and Associated Risk Factors for Mortality Among Infants with Critical Congenital Heart Disease in a Developing Country [J].
Bah, Mohd Nizam Mat ;
Sapian, Mohd Hanafi ;
Jamil, Mohammad Tamim ;
Alias, Amelia ;
Zahari, Norazah .
PEDIATRIC CARDIOLOGY, 2018, 39 (07) :1389-1396
[4]   Prenatal diagnosis and prevalence of critical congenital heart defects: an international retrospective cohort study [J].
Bakker, Marian K. ;
Bergman, Jorieke E. H. ;
Krikov, Sergey ;
Amar, Emmanuelle ;
Cocchi, Guido ;
Cragan, Janet ;
de Walle, Hermien E. K. ;
Gatt, Miriam ;
Groisman, Boris ;
Liu, Shiliang ;
Nembhard, Wendy N. ;
Pierini, Anna ;
Rissmann, Anke ;
Chidambarathanu, Shanthi ;
Sipek, Antonin, Jr. ;
Szabova, Elena ;
Tagliabue, Giovanna ;
Tucker, David ;
Mastroiacovo, Pierpaolo ;
Botto, Lorenzo D. .
BMJ OPEN, 2019, 9 (07)
[5]   SonoNet: Real-Time Detection and Localisation of Fetal Standard Scan Planes in Freehand Ultrasound [J].
Baumgartner, Christian F. ;
Kamnitsas, Konstantinos ;
Matthew, Jacqueline ;
Fletcher, Tara P. ;
Smith, Sandra ;
Koch, Lisa M. ;
Kainz, Bernhard ;
Rueckert, Daniel .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2017, 36 (11) :2204-2215
[6]   Artificial intelligence in cardiology [J].
Bonderman, Diana .
WIENER KLINISCHE WOCHENSCHRIFT, 2017, 129 (23-24) :866-868
[7]   Impact of prenatal diagnosis of complex congenital heart disease on neonatal and infant morbidity and mortality [J].
Chakraborty, Abhishek ;
Gorla, Sudheer R. ;
Swaminathan, Sethuraman .
PRENATAL DIAGNOSIS, 2018, 38 (12) :958-963
[8]  
Chaoui R, 1999, ULTRASCHALL MED, V20, P177
[9]   Ultrasound Standard Plane Detection Using a Composite Neural Network Framework [J].
Chen, Hao ;
Wu, Lingyun ;
Dou, Qi ;
Qin, Jing ;
Li, Shengli ;
Cheng, Jie-Zhi ;
Ni, Dong ;
Heng, Pheng-Ann .
IEEE TRANSACTIONS ON CYBERNETICS, 2017, 47 (06) :1576-1586
[10]   Standard Plane Localization in Fetal Ultrasound via Domain Transferred Deep Neural Networks [J].
Chen, Hao ;
Ni, Dong ;
Qin, Jing ;
Li, Shengli ;
Yang, Xin ;
Wang, Tianfu ;
Heng, Pheng Ann .
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2015, 19 (05) :1627-1636