On the D5-brane description of 14\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \frac{1}{4} $$\end{document}-BPS Wilson loops in N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 super Yang-Mills theory

被引:0
|
作者
Alberto Faraggi [1 ]
Cristóbal Moreno [1 ]
机构
[1] Pontificia Universidad Católica de Chile,Instituto de Física
关键词
AdS-CFT Correspondence; Wilson, ’t Hooft and Polyakov loops; D-Branes; Supersymmetric Gauge Theory;
D O I
10.1007/JHEP07(2024)131
中图分类号
学科分类号
摘要
We construct the probe D5-brane solution in AdS5 × S5 dual to the 14\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \frac{1}{4} $$\end{document}-BPS latitude Wilson loop in N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 super Yang-Mills theory in the k-antisymmetric representation of SU(N). The solution is exact in the latitude parameter θ0 and correctly reproduces the 12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \frac{1}{2} $$\end{document}-BPS limit. We compute the string charge k and the renormalized on-shell action perturbatively to order Oθ010\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{O}\left({\theta}_0^{10}\right) $$\end{document} and find full agreement with the expectation value of the Wilson loop predicted by the Gaussian matrix model in the limit N ∼ k → ∞, λ → ∞.
引用
收藏
相关论文
共 50 条