More reliable biomarkers and more accurate prediction for mental disorders using a label-noise filtering-based dimensional prediction method

被引:2
作者
Xing, Ying [1 ]
van Erp, Theo G. M. [2 ,3 ]
Pearlson, Godfrey D. [4 ,5 ,6 ]
Kochunov, Peter [7 ,8 ]
Calhoun, Vince D. [9 ]
Du, Yuhui [1 ]
机构
[1] Shanxi Univ, Sch Comp & Informat Technol, Taiyuan 030006, Peoples R China
[2] Univ Calif Irvine, Sch Med, Dept Psychiat & Human Behav, Irvine, CA 92617 USA
[3] Univ Calif Irvine, Ctr Neurobiol Learning & Memory, Irvine, CA 92617 USA
[4] Yale Univ, Dept Psychiat, New Haven, CT 06519 USA
[5] Yale Univ, Dept Neurobiol, New Haven, CT 06519 USA
[6] Inst Living, Olin Neuropsychiat Res Ctr, Hartford, CT 06106 USA
[7] Univ Maryland, Sch Med, Maryland Psychiat Res Ctr, Baltimore, MD 21201 USA
[8] Univ Maryland, Sch Med, Dept Psychiat, Baltimore, MD 21201 USA
[9] Emory Univ, Georgia State Univ, Georgia Inst Technol, Triinst Ctr Translat Res Neuroimaging & Data Sci T, Atlanta, GA 30030 USA
基金
美国国家卫生研究院; 中国国家自然科学基金;
关键词
SCHIZOPHRENIA; CLASSIFICATION; CONNECTIVITY; HEALTH; STATE; ABNORMALITIES; FRAMEWORK; NETWORK; BIPOLAR; BRAIN;
D O I
10.1016/j.isci.2024.109319
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The integration of neuroimaging with artificial intelligence is crucial for advancing the diagnosis of mental disorders. However, challenges arise from incomplete matching between diagnostic labels and neuroimaging. Here, we propose a label -noise filtering -based dimensional prediction (LAMP) method to identify reliable biomarkers and achieve accurate prediction for mental disorders. Our method proposes to utilize a label -noise filtering model to automatically filter out unclear cases from a neuroimaging perspective, and then the typical subjects whose diagnostic labels align with neuroimaging measures are used to construct a dimensional prediction model to score independent subjects. Using fMRI data of schizophrenia patients and healthy controls (n = 1,245), our method yields consistent scores to independent subjects, leading to more distinguishable relabeled groups with an enhanced classification accuracy of 31.89%. Additionally, it enables the exploration of stable abnormalities in schizophrenia. In summary, our LAMP method facilitates the identification of reliable biomarkers and accurate diagnosis of mental disorders using neuroimages.
引用
收藏
页数:23
相关论文
共 65 条
[21]   Classification and Prediction of Brain Disorders Using Functional Connectivity: Promising but Challenging [J].
Du, Yuhui ;
Fu, Zening ;
Calhoun, Vince D. .
FRONTIERS IN NEUROSCIENCE, 2018, 12
[22]   Group information guided ICA for fMRI data analysis [J].
Du, Yuhui ;
Fan, Yong .
NEUROIMAGE, 2013, 69 :157-197
[23]   Altered basal ganglia network integration in schizophrenia [J].
Duan, Mingjun ;
Chen, Xi ;
He, Hui ;
Jiang, Yuchao ;
Jiang, Sisi ;
Xie, Qiankun ;
Lai, Yongxiu ;
Luo, Cheng ;
Yao, Dezhong .
FRONTIERS IN HUMAN NEUROSCIENCE, 2015, 9
[24]  
Dunn J. C., 1974, Journal of Cybernetics, V4, P95, DOI 10.1080/01969727408546059
[25]   The Heterogeneity Problem: Approaches to Identify Psychiatric Subtypes [J].
Feczko, Eric ;
Miranda-Dominguez, Oscar ;
Marr, Mollie ;
Graham, Alice M. ;
Nigg, Joel T. ;
Fair, Damien A. .
TRENDS IN COGNITIVE SCIENCES, 2019, 23 (07) :584-601
[26]   Global, regional, and national burden of 12 mental disorders in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019 [J].
Ferrari, Alize J. ;
Santomauro, Damian F. ;
Herrera, Ana M. Mantilla ;
Shadid, Jamileh ;
Ashbaugh, Charlie ;
Erskine, Holly E. ;
Charlson, Fiona J. ;
Degenhardt, Louisa ;
Scott, James G. ;
McGrath, John J. ;
Allebeck, Peter ;
Benjet, Corina ;
Breitborde, Nicholas J. K. ;
Brugha, Traolach ;
Dai, Xiaochen ;
Dandona, Lalit ;
Dandona, Rakhi ;
Fischer, Florian ;
Haagsma, Juanita A. ;
Maria Haro, Josep ;
Kieling, Christian ;
Knudsen, Ann Kristin Skrindo ;
Kumar, G. Anil ;
Leung, Janni ;
Majeed, Azeem ;
Mitchell, Philip B. ;
Moitra, Modhurima ;
Mokdad, Ali H. ;
Molokhia, Mariam ;
Patten, Scott B. ;
Patton, George C. ;
Phillips, Michael R. ;
Soriano, Joan B. ;
Stein, Dan J. ;
Stein, Murray B. ;
Szoeke, Cassandra E., I ;
Naghavi, Mohsen ;
Hay, Simon, I ;
Murray, Christopher J. L. ;
Vos, Theo ;
Whiteford, Harvey A. .
LANCET PSYCHIATRY, 2022, 9 (02) :137-150
[27]   Resting-state thalamic dysconnectivity in schizophrenia and relationships with symptoms [J].
Ferri, J. ;
Ford, J. M. ;
Roach, B. J. ;
Turner, J. A. ;
van Erp, T. G. ;
Voyvodic, J. ;
Preda, A. ;
Belger, A. ;
Bustillo, J. ;
O'Leary, D. ;
Mueller, B. A. ;
Lim, K. O. ;
McEwen, S. C. ;
Calhoun, V. D. ;
Diaz, M. ;
Glover, G. ;
Greve, D. ;
Wible, C. G. ;
Vaidya, J. G. ;
Potkin, S. G. ;
Mathalon, D. H. .
PSYCHOLOGICAL MEDICINE, 2018, 48 (15) :2492-2499
[28]   Classification in the Presence of Label Noise: a Survey [J].
Frenay, Benoit ;
Verleysen, Michel .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2014, 25 (05) :845-869
[29]   Transdiagnostic Symptom Clusters and Associations With Brain, Behavior, and Daily Function in Mood, Anxiety, and Trauma Disorders [J].
Grisanzio, Katherine A. ;
Goldstein-Piekarski, Andrea N. ;
Wang, Michelle Yuyun ;
Ahmed, Abdullah P. Rashed ;
Samara, Zoe ;
Williams, Leanne M. .
JAMA PSYCHIATRY, 2018, 75 (02) :201-209
[30]   Disturbed functional connectivity within brain networks subserving domain-specific subcomponents of working memory in schizophrenia: Relation to performance and clinical symptoms [J].
Henseler, Ilona ;
Falkai, Peter ;
Gruber, Oliver .
JOURNAL OF PSYCHIATRIC RESEARCH, 2010, 44 (06) :364-372