More reliable biomarkers and more accurate prediction for mental disorders using a label-noise filtering-based dimensional prediction method

被引:2
作者
Xing, Ying [1 ]
van Erp, Theo G. M. [2 ,3 ]
Pearlson, Godfrey D. [4 ,5 ,6 ]
Kochunov, Peter [7 ,8 ]
Calhoun, Vince D. [9 ]
Du, Yuhui [1 ]
机构
[1] Shanxi Univ, Sch Comp & Informat Technol, Taiyuan 030006, Peoples R China
[2] Univ Calif Irvine, Sch Med, Dept Psychiat & Human Behav, Irvine, CA 92617 USA
[3] Univ Calif Irvine, Ctr Neurobiol Learning & Memory, Irvine, CA 92617 USA
[4] Yale Univ, Dept Psychiat, New Haven, CT 06519 USA
[5] Yale Univ, Dept Neurobiol, New Haven, CT 06519 USA
[6] Inst Living, Olin Neuropsychiat Res Ctr, Hartford, CT 06106 USA
[7] Univ Maryland, Sch Med, Maryland Psychiat Res Ctr, Baltimore, MD 21201 USA
[8] Univ Maryland, Sch Med, Dept Psychiat, Baltimore, MD 21201 USA
[9] Emory Univ, Georgia State Univ, Georgia Inst Technol, Triinst Ctr Translat Res Neuroimaging & Data Sci T, Atlanta, GA 30030 USA
基金
美国国家卫生研究院; 中国国家自然科学基金;
关键词
SCHIZOPHRENIA; CLASSIFICATION; CONNECTIVITY; HEALTH; STATE; ABNORMALITIES; FRAMEWORK; NETWORK; BIPOLAR; BRAIN;
D O I
10.1016/j.isci.2024.109319
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The integration of neuroimaging with artificial intelligence is crucial for advancing the diagnosis of mental disorders. However, challenges arise from incomplete matching between diagnostic labels and neuroimaging. Here, we propose a label -noise filtering -based dimensional prediction (LAMP) method to identify reliable biomarkers and achieve accurate prediction for mental disorders. Our method proposes to utilize a label -noise filtering model to automatically filter out unclear cases from a neuroimaging perspective, and then the typical subjects whose diagnostic labels align with neuroimaging measures are used to construct a dimensional prediction model to score independent subjects. Using fMRI data of schizophrenia patients and healthy controls (n = 1,245), our method yields consistent scores to independent subjects, leading to more distinguishable relabeled groups with an enhanced classification accuracy of 31.89%. Additionally, it enables the exploration of stable abnormalities in schizophrenia. In summary, our LAMP method facilitates the identification of reliable biomarkers and accurate diagnosis of mental disorders using neuroimages.
引用
收藏
页数:23
相关论文
共 65 条
  • [21] Classification and Prediction of Brain Disorders Using Functional Connectivity: Promising but Challenging
    Du, Yuhui
    Fu, Zening
    Calhoun, Vince D.
    [J]. FRONTIERS IN NEUROSCIENCE, 2018, 12
  • [22] Group information guided ICA for fMRI data analysis
    Du, Yuhui
    Fan, Yong
    [J]. NEUROIMAGE, 2013, 69 : 157 - 197
  • [23] Altered basal ganglia network integration in schizophrenia
    Duan, Mingjun
    Chen, Xi
    He, Hui
    Jiang, Yuchao
    Jiang, Sisi
    Xie, Qiankun
    Lai, Yongxiu
    Luo, Cheng
    Yao, Dezhong
    [J]. FRONTIERS IN HUMAN NEUROSCIENCE, 2015, 9
  • [24] Dunn J. C., 1974, Journal of Cybernetics, V4, P95, DOI 10.1080/01969727408546059
  • [25] The Heterogeneity Problem: Approaches to Identify Psychiatric Subtypes
    Feczko, Eric
    Miranda-Dominguez, Oscar
    Marr, Mollie
    Graham, Alice M.
    Nigg, Joel T.
    Fair, Damien A.
    [J]. TRENDS IN COGNITIVE SCIENCES, 2019, 23 (07) : 584 - 601
  • [26] Global, regional, and national burden of 12 mental disorders in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019
    Ferrari, Alize J.
    Santomauro, Damian F.
    Herrera, Ana M. Mantilla
    Shadid, Jamileh
    Ashbaugh, Charlie
    Erskine, Holly E.
    Charlson, Fiona J.
    Degenhardt, Louisa
    Scott, James G.
    McGrath, John J.
    Allebeck, Peter
    Benjet, Corina
    Breitborde, Nicholas J. K.
    Brugha, Traolach
    Dai, Xiaochen
    Dandona, Lalit
    Dandona, Rakhi
    Fischer, Florian
    Haagsma, Juanita A.
    Maria Haro, Josep
    Kieling, Christian
    Knudsen, Ann Kristin Skrindo
    Kumar, G. Anil
    Leung, Janni
    Majeed, Azeem
    Mitchell, Philip B.
    Moitra, Modhurima
    Mokdad, Ali H.
    Molokhia, Mariam
    Patten, Scott B.
    Patton, George C.
    Phillips, Michael R.
    Soriano, Joan B.
    Stein, Dan J.
    Stein, Murray B.
    Szoeke, Cassandra E., I
    Naghavi, Mohsen
    Hay, Simon, I
    Murray, Christopher J. L.
    Vos, Theo
    Whiteford, Harvey A.
    [J]. LANCET PSYCHIATRY, 2022, 9 (02): : 137 - 150
  • [27] Resting-state thalamic dysconnectivity in schizophrenia and relationships with symptoms
    Ferri, J.
    Ford, J. M.
    Roach, B. J.
    Turner, J. A.
    van Erp, T. G.
    Voyvodic, J.
    Preda, A.
    Belger, A.
    Bustillo, J.
    O'Leary, D.
    Mueller, B. A.
    Lim, K. O.
    McEwen, S. C.
    Calhoun, V. D.
    Diaz, M.
    Glover, G.
    Greve, D.
    Wible, C. G.
    Vaidya, J. G.
    Potkin, S. G.
    Mathalon, D. H.
    [J]. PSYCHOLOGICAL MEDICINE, 2018, 48 (15) : 2492 - 2499
  • [28] Classification in the Presence of Label Noise: a Survey
    Frenay, Benoit
    Verleysen, Michel
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2014, 25 (05) : 845 - 869
  • [29] Transdiagnostic Symptom Clusters and Associations With Brain, Behavior, and Daily Function in Mood, Anxiety, and Trauma Disorders
    Grisanzio, Katherine A.
    Goldstein-Piekarski, Andrea N.
    Wang, Michelle Yuyun
    Ahmed, Abdullah P. Rashed
    Samara, Zoe
    Williams, Leanne M.
    [J]. JAMA PSYCHIATRY, 2018, 75 (02) : 201 - 209
  • [30] Disturbed functional connectivity within brain networks subserving domain-specific subcomponents of working memory in schizophrenia: Relation to performance and clinical symptoms
    Henseler, Ilona
    Falkai, Peter
    Gruber, Oliver
    [J]. JOURNAL OF PSYCHIATRIC RESEARCH, 2010, 44 (06) : 364 - 372