More reliable biomarkers and more accurate prediction for mental disorders using a label-noise filtering-based dimensional prediction method

被引:2
作者
Xing, Ying [1 ]
van Erp, Theo G. M. [2 ,3 ]
Pearlson, Godfrey D. [4 ,5 ,6 ]
Kochunov, Peter [7 ,8 ]
Calhoun, Vince D. [9 ]
Du, Yuhui [1 ]
机构
[1] Shanxi Univ, Sch Comp & Informat Technol, Taiyuan 030006, Peoples R China
[2] Univ Calif Irvine, Sch Med, Dept Psychiat & Human Behav, Irvine, CA 92617 USA
[3] Univ Calif Irvine, Ctr Neurobiol Learning & Memory, Irvine, CA 92617 USA
[4] Yale Univ, Dept Psychiat, New Haven, CT 06519 USA
[5] Yale Univ, Dept Neurobiol, New Haven, CT 06519 USA
[6] Inst Living, Olin Neuropsychiat Res Ctr, Hartford, CT 06106 USA
[7] Univ Maryland, Sch Med, Maryland Psychiat Res Ctr, Baltimore, MD 21201 USA
[8] Univ Maryland, Sch Med, Dept Psychiat, Baltimore, MD 21201 USA
[9] Emory Univ, Georgia State Univ, Georgia Inst Technol, Triinst Ctr Translat Res Neuroimaging & Data Sci T, Atlanta, GA 30030 USA
基金
中国国家自然科学基金; 美国国家卫生研究院;
关键词
SCHIZOPHRENIA; CLASSIFICATION; CONNECTIVITY; HEALTH; STATE; ABNORMALITIES; FRAMEWORK; NETWORK; BIPOLAR; BRAIN;
D O I
10.1016/j.isci.2024.109319
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The integration of neuroimaging with artificial intelligence is crucial for advancing the diagnosis of mental disorders. However, challenges arise from incomplete matching between diagnostic labels and neuroimaging. Here, we propose a label -noise filtering -based dimensional prediction (LAMP) method to identify reliable biomarkers and achieve accurate prediction for mental disorders. Our method proposes to utilize a label -noise filtering model to automatically filter out unclear cases from a neuroimaging perspective, and then the typical subjects whose diagnostic labels align with neuroimaging measures are used to construct a dimensional prediction model to score independent subjects. Using fMRI data of schizophrenia patients and healthy controls (n = 1,245), our method yields consistent scores to independent subjects, leading to more distinguishable relabeled groups with an enhanced classification accuracy of 31.89%. Additionally, it enables the exploration of stable abnormalities in schizophrenia. In summary, our LAMP method facilitates the identification of reliable biomarkers and accurate diagnosis of mental disorders using neuroimages.
引用
收藏
页数:23
相关论文
共 65 条
  • [1] Multimodal Neuroimaging in Schizophrenia: Description and Dissemination
    Aine, C. J.
    Bockholt, H. J.
    Bustillo, J. R.
    Canive, J. M.
    Caprihan, A.
    Gasparovic, C.
    Hanlon, F. M.
    Houck, J. M.
    Jung, R. E.
    Lauriello, J.
    Liu, J.
    Mayer, A. R.
    Perrone-Bizzozero, N. I.
    Posse, S.
    Stephen, J. M.
    Turner, J. A.
    Clark, V. P.
    Calhoun, Vince D.
    [J]. NEUROINFORMATICS, 2017, 15 (04) : 343 - 364
  • [2] Functional connectivity magnetic resonance imaging classification of autism
    Anderson, Jeffrey S.
    Nielsen, Jared A.
    Froehlich, Alyson L.
    DuBray, Molly B.
    Druzgal, T. Jason
    Cariello, Annahir N.
    Cooperrider, Jason R.
    Zielinski, Brandon A.
    Ravichandran, Caitlin
    Fletcher, P. Thomas
    Alexander, Andrew L.
    Bigler, Erin D.
    Lange, Nicholas
    Lainhart, Janet E.
    [J]. BRAIN, 2011, 134 : 3739 - 3751
  • [3] The role of the cerebellum in schizophrenia
    Andreasen, Nancy C.
    Pierson, Ronald
    [J]. BIOLOGICAL PSYCHIATRY, 2008, 64 (02) : 81 - 88
  • [4] Ayachit U., 2015, The ParaView Guide: A Parallel Visualization Application
  • [5] Active label cleaning for improved dataset quality under resource constraints
    Bernhardt, Melanie
    Castro, Daniel C.
    Tanno, Ryutaro
    Schwaighofer, Anton
    Tezcan, Kerem C.
    Monteiro, Miguel
    Bannur, Shruthi
    Lungren, Matthew
    Nori, Aditya
    Glocker, Ben
    Alvarez-Valle, Javier
    Oktay, Ozan
    [J]. NATURE COMMUNICATIONS, 2022, 13 (01)
  • [6] Structural brain abnormalities in individuals with an at-risk mental state who later develop psychosis
    Borgwardt, Stefan J.
    McGuire, Philip K.
    Aston, Jacqueline
    Berger, Gregor
    Dazzan, Paola
    Gschwandtner, Ute
    Pflueger, Marlon
    D'Souza, Marcus
    Radue, Ernst-Wilhelm
    Riecher-Roessler, Anita
    [J]. BRITISH JOURNAL OF PSYCHIATRY, 2007, 191 : S69 - S75
  • [7] Generalizability of machine learning for classification of schizophrenia based on resting-state functional MRI data
    Cai, Xin-Lu
    Xie, Dong-Jie
    Madsen, Kristoffer H.
    Wang, Yong-Ming
    Bogemann, Sophie Alida
    Cheung, Eric F. C.
    Moller, Arne
    Chan, Raymond C. K.
    [J]. HUMAN BRAIN MAPPING, 2020, 41 (01) : 172 - 184
  • [8] Caliski T., 1974, Communications in Statistics, V3, P1, DOI [10.1080/03610927408827101, DOI 10.1080/03610927408827101]
  • [9] Treatment response prediction and individualized identification of first-episode drug-naive schizophrenia using brain functional connectivity
    Cao, Bo
    Cho, Raymond Y.
    Chen, Dachun
    Xiu, Meihong
    Wang, Li
    Soares, Jair C.
    Zhang, Xiang Yang
    [J]. MOLECULAR PSYCHIATRY, 2020, 25 (04) : 906 - 913
  • [10] Chang M, 2021, MOL PSYCHIATR, V26, P2991, DOI 10.1038/s41380-020-00892-3