More reliable biomarkers and more accurate prediction for mental disorders using a label-noise filtering-based dimensional prediction method

被引:2
作者
Xing, Ying [1 ]
van Erp, Theo G. M. [2 ,3 ]
Pearlson, Godfrey D. [4 ,5 ,6 ]
Kochunov, Peter [7 ,8 ]
Calhoun, Vince D. [9 ]
Du, Yuhui [1 ]
机构
[1] Shanxi Univ, Sch Comp & Informat Technol, Taiyuan 030006, Peoples R China
[2] Univ Calif Irvine, Sch Med, Dept Psychiat & Human Behav, Irvine, CA 92617 USA
[3] Univ Calif Irvine, Ctr Neurobiol Learning & Memory, Irvine, CA 92617 USA
[4] Yale Univ, Dept Psychiat, New Haven, CT 06519 USA
[5] Yale Univ, Dept Neurobiol, New Haven, CT 06519 USA
[6] Inst Living, Olin Neuropsychiat Res Ctr, Hartford, CT 06106 USA
[7] Univ Maryland, Sch Med, Maryland Psychiat Res Ctr, Baltimore, MD 21201 USA
[8] Univ Maryland, Sch Med, Dept Psychiat, Baltimore, MD 21201 USA
[9] Emory Univ, Georgia State Univ, Georgia Inst Technol, Triinst Ctr Translat Res Neuroimaging & Data Sci T, Atlanta, GA 30030 USA
基金
美国国家卫生研究院; 中国国家自然科学基金;
关键词
SCHIZOPHRENIA; CLASSIFICATION; CONNECTIVITY; HEALTH; STATE; ABNORMALITIES; FRAMEWORK; NETWORK; BIPOLAR; BRAIN;
D O I
10.1016/j.isci.2024.109319
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The integration of neuroimaging with artificial intelligence is crucial for advancing the diagnosis of mental disorders. However, challenges arise from incomplete matching between diagnostic labels and neuroimaging. Here, we propose a label -noise filtering -based dimensional prediction (LAMP) method to identify reliable biomarkers and achieve accurate prediction for mental disorders. Our method proposes to utilize a label -noise filtering model to automatically filter out unclear cases from a neuroimaging perspective, and then the typical subjects whose diagnostic labels align with neuroimaging measures are used to construct a dimensional prediction model to score independent subjects. Using fMRI data of schizophrenia patients and healthy controls (n = 1,245), our method yields consistent scores to independent subjects, leading to more distinguishable relabeled groups with an enhanced classification accuracy of 31.89%. Additionally, it enables the exploration of stable abnormalities in schizophrenia. In summary, our LAMP method facilitates the identification of reliable biomarkers and accurate diagnosis of mental disorders using neuroimages.
引用
收藏
页数:23
相关论文
共 65 条
[1]   Multimodal Neuroimaging in Schizophrenia: Description and Dissemination [J].
Aine, C. J. ;
Bockholt, H. J. ;
Bustillo, J. R. ;
Canive, J. M. ;
Caprihan, A. ;
Gasparovic, C. ;
Hanlon, F. M. ;
Houck, J. M. ;
Jung, R. E. ;
Lauriello, J. ;
Liu, J. ;
Mayer, A. R. ;
Perrone-Bizzozero, N. I. ;
Posse, S. ;
Stephen, J. M. ;
Turner, J. A. ;
Clark, V. P. ;
Calhoun, Vince D. .
NEUROINFORMATICS, 2017, 15 (04) :343-364
[2]   Functional connectivity magnetic resonance imaging classification of autism [J].
Anderson, Jeffrey S. ;
Nielsen, Jared A. ;
Froehlich, Alyson L. ;
DuBray, Molly B. ;
Druzgal, T. Jason ;
Cariello, Annahir N. ;
Cooperrider, Jason R. ;
Zielinski, Brandon A. ;
Ravichandran, Caitlin ;
Fletcher, P. Thomas ;
Alexander, Andrew L. ;
Bigler, Erin D. ;
Lange, Nicholas ;
Lainhart, Janet E. .
BRAIN, 2011, 134 :3739-3751
[3]   The role of the cerebellum in schizophrenia [J].
Andreasen, Nancy C. ;
Pierson, Ronald .
BIOLOGICAL PSYCHIATRY, 2008, 64 (02) :81-88
[4]  
Ayachit U., 2015, The Paraview Guide: A Parallel Visualization Application
[5]   Active label cleaning for improved dataset quality under resource constraints [J].
Bernhardt, Melanie ;
Castro, Daniel C. ;
Tanno, Ryutaro ;
Schwaighofer, Anton ;
Tezcan, Kerem C. ;
Monteiro, Miguel ;
Bannur, Shruthi ;
Lungren, Matthew ;
Nori, Aditya ;
Glocker, Ben ;
Alvarez-Valle, Javier ;
Oktay, Ozan .
NATURE COMMUNICATIONS, 2022, 13 (01)
[6]   Structural brain abnormalities in individuals with an at-risk mental state who later develop psychosis [J].
Borgwardt, Stefan J. ;
McGuire, Philip K. ;
Aston, Jacqueline ;
Berger, Gregor ;
Dazzan, Paola ;
Gschwandtner, Ute ;
Pflueger, Marlon ;
D'Souza, Marcus ;
Radue, Ernst-Wilhelm ;
Riecher-Roessler, Anita .
BRITISH JOURNAL OF PSYCHIATRY, 2007, 191 :S69-S75
[7]   Generalizability of machine learning for classification of schizophrenia based on resting-state functional MRI data [J].
Cai, Xin-Lu ;
Xie, Dong-Jie ;
Madsen, Kristoffer H. ;
Wang, Yong-Ming ;
Bogemann, Sophie Alida ;
Cheung, Eric F. C. ;
Moller, Arne ;
Chan, Raymond C. K. .
HUMAN BRAIN MAPPING, 2020, 41 (01) :172-184
[8]  
Caliski T., 1974, Communications in Statistics-theory and Methods, V3, P1, DOI [DOI 10.1080/03610927408827101, 10.1080/03610927408827101]
[9]   Treatment response prediction and individualized identification of first-episode drug-naive schizophrenia using brain functional connectivity [J].
Cao, Bo ;
Cho, Raymond Y. ;
Chen, Dachun ;
Xiu, Meihong ;
Wang, Li ;
Soares, Jair C. ;
Zhang, Xiang Yang .
MOLECULAR PSYCHIATRY, 2020, 25 (04) :906-913
[10]   Identifying and validating subtypes within major psychiatric disorders based on frontal-posterior functional imbalance via deep learning [J].
Chang, Miao ;
Womer, Fay Y. ;
Gong, Xiaohong ;
Chen, Xi ;
Tang, Lili ;
Feng, Ruiqi ;
Dong, Shuai ;
Duan, Jia ;
Chen, Yifan ;
Zhang, Ran ;
Wang, Yang ;
Ren, Sihua ;
Wang, Yi ;
Kang, Jujiao ;
Yin, Zhiyang ;
Wei, Yange ;
Wei, Shengnan ;
Jiang, Xiaowei ;
Xu, Ke ;
Cao, Bo ;
Zhang, Yanbo ;
Zhang, Weixiong ;
Tang, Yanqing ;
Zhang, Xizhe ;
Wang, Fei .
MOLECULAR PSYCHIATRY, 2021, 26 (07) :2991-3002